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Abstract: This paper presents an image processing
system which integrates color and range images for
plant recognition. The system consists of a pan-tilt-
zoom color camera and a horizontal line-scanning laser
rangefinder which can rotate vertically. The color and
range images captured by these devices are integrated
and fused so that the pixels of both images are related.
At the same time, the color and the range (distance)
data are used for extracting and classifying the parts of
the plant, where a competitive neural network is used
for classifying leaves and stalks. We show the experi-
mental results where the present system could recognize
the parts of the plant.

1. Introduction

In recent years, many practical and automatic plant
recognition methods for weed removal system or auto-
matic management of crops have been proposed [1]–
[7]. The methods proposed in early researches [1]–[3]
are based only on color image processing where a spe-
cific plant is detected by the color and crops and weeds
are discriminated by 2-dimensional leaf shape analy-
sis. However, since the main purpose of these studies
is for spot spraying agricultural chemicals around target
weeds in a limited area, the measurement of the individ-
ual position of the target plant is not taken into consid-
eration. Furthermore, the methods are supposed to be
used under limited situation, such as the case where the
sprout time of target plants is controlled and the plants
have comparatively few individual differences. On the
other hand, a method to discriminate 30 or more vari-
eties of wild grasses via image processing has been pro-
posed [5], however, since this method requires the photo
images, where a flower or a leaf of wild grass should be
shapely extracted, it is difficult to apply the method to
the living wild grass.

Over the past few years, new methods using a camera
and a laser rangefinder (LRF) have been developed [6],
[7], where the methods measure the accurate positions of
crops and the degree of maturity of fruits by combining
color and range images. However, since a fixed camera
is used in these researches, the view of the camera is
restricted.

Therefore, in this study, we have developed a sys-
tem consists of a PTZ (pan-tilt-zoom) color camera and
a horizontal line-scanning LRF which can rotate verti-
cally by a suspension unit similar to those of [8], [9].
Furthermore, we propose a method using CNN (Com-
petitive Neural Network) [10] for recognizing and dis-
criminating the parts of a target plant. The overall
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Figure 1. Schematic diagram of the present system.

flow of the present system is as follows (see Fig.1); first,
the color image is captured and a pre-processing to ex-
tract the plant from background is carried out based on
the hue value of the plant. At the same time, the 3-
dimensional scanning by the LRF and a pre-processing
to produce the range image are carried out. Next, these
images are integrated and then the pixels of those im-
ages are related. Further, the range image is clustered
into sub-areas according to the range data, where the
range values of the pixels in each sub-area are close and
the number of the pixels of each sub-area is larger than
a certain constant. Finally, the parts of the target plant
is discriminated into leaves and stalks through pattern
matching by the CNN.

2. Image Sensor System

We have constructed the sensor system shown in
Fig.2 and the devices are placed as shown in Fig.3. Here,
(XL, YL, ZL) and (XC , YC , ZC) are the LRF and the
camera coordinates system, respectively.

2.1 PTZ Color Camera

(1) Capturing Color Image

A 24bit RGB color image p(x) is captured by the
PTZ color camera, where p(x) represents the color or
hue at

x =
{
(i, j)T ∈ R2|i = 1, · · · , Nx; j = 1, · · · , Ny

}
. (1)

As a pre-processing for extracting the region of the tar-
get plant, we employ the modified hue transformation
described bellow, and binarization, and noise elimina-
tion.



Figure 2. The sensor system consisting of the LRF (cen-
ter) mounted on the suspension unit, the stepping
motor (left), and the PTZ color camera (right).
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Figure 3. Relation between the coordinate systems of
the LRF and the PTZ color camera.

(2) Modified Hue

Since the RGB values of the captured images tend to
change by the strength of the surrounding light sources,
we transform the color image into the hue image, i.e.
each hue of the pixel (i, j) is calculated by

hij =

cos−1

(
(rij − gij) + (rij − bij)

2 {(rij − gij)2 + (rij − bij)(gij − bij)}1/2

)
,

(2)

where (rij , gij , bij) are RGB values, and the hue ranges
from 0[deg] to 360[deg]. However, according to [4], no
value of hue was found within the range of 146[deg] to
228[deg] for any field surface, so that the modified hue
has been proposed where hues grater than 180[deg] are
represented as negative angles in order to eliminate the
discontinuity around the red hue area (around 0[deg]
and 360[deg]), and it has been shown that the best sep-
aration of plants and the background occurred with the
modified hue among a number of color indices. We use
the modified hue given by

hij :=

{
hij − 180 if hij > 180,

hij + 180 otherwise,
(3)

which also has no discontinuity around the red hue area
and has nonnegative value. An example of images is

(a) (b)

Figure 4. Example of a camera image of a plant. (a) A
color image (240×320[pixel]). The rectangle region
is a target plant region calculated by (b) a pre-
processed image based on modified hue value.

shown in Fig.4(a), where the rectangular region involv-
ing the target plant, which we call the target plant re-
gion, is obtained via the modified hue method. And
then, we obtain Fig.4(b) by means of binarizing the im-
age with respect to the modified hue values of the target
plant, and noise reduction via moving average filter and
quantization filter. The target plant region is used for
the integration with the following range data.

2.2 LRF

We use the LRF (SICK LMS 200) which basically
scans the horizontal two-dimensional plane to measure
the distance to the object, where the maximum measur-
able distance is 8191[mm], and the maximum scanning
range is 180[deg] with angular resolution 0.25[deg]. In
order to scan three-dimensional space, we have designed
to make a suspension unit for rotating the LRF verti-
cally by means of a geared stepping motor with angle
resolution 0.05[deg]. Thus, we can obtain the three-
dimensional position xL

nm from the measured distance
dnm for the horizontal angle θn and the vertical rota-
tion angle φm, as follows:

xL
nm =




xL
nm

yL
nm

zL
nm


 =




dnm cosφm cos θn

dnm sin φm

dnm cos φm sin θn


 , (4)

where we use the angles given by

θn = 0.25n + 40[deg] (n = 0, 1, · · · , 400), (5)
φm = 0.25m− 50[deg] (m = 0, 1, · · · , 400). (6)

The example of the range image of the same target plant
as given in Fig.4 is shown in Fig.5, where the distance
from 200 to 1200[mm] is digitized into 256 gray levels.

3. Integration and Clustering of
Measurement Data

3.1 Integration of color and range image

We show two methods of integrating color and range
images; one is to match the pixels of both images di-
rectly, and the other is to map the target plant region
of the color image to the range image.



Figure 5. Range image of a plant(401 × 401 [pixel]).

(a) Color image. (b) Range image.

(c) Integrated image.

Figure 6. Example of the pixel matching integration of
images.

(1) Pixel Matching

The position xC
nm = (xC

nm, yC
nm, zC

nm)T on the camera
coordinate system can be represented by the position
xL

nm on the LRF coordinate system as follows,

xC
nm = R(ψ) · xL

nm + l, (7)

where R(ψ) ∈ R3×3 is three-dimensional rotation ma-
trix with respect to ψ = (ψx, ψy, ψz)T , where ψx, ψy

and ψz are the rotation angles around the XC , YC and
ZC axes (see Fig.2), and l = (lx, ly, lz)T is the position
of the camera from the LRF. Through the perspective
projection, the position (i, j) on the camera image is
represented as follows,

(i, j) =
(

fc
xC

nm

zC
nm

+
Nx

2
, −

(
fc

yC
nm

zC
nm

+
Ny

2

))
, (8)

where fc is the focal length. Thus, the color of the po-
sition (θn, φm) on the range image is supposed to be

the same color of the corresponding position (i, j) on
the color image, where (i, j) corresponds to (θn, φm)
through Eqs.(4)–(8). Here, note that when more than
one position on the range image correspond to a position
(i, j) on the color image, or some positions correspond-
ing to range pixels are occluded in the camera image,
we set the color of (i, j) to the pixel (θn, φm) with the
minimum dnm.

An example of the above integration of two images
for a color cube is shown in Fig.6, where the image (c)
originally is the range image (b) but the pixels corre-
sponding to the color image (a) is colored. Although
most of range pixels look like colored correctly, some er-
rors have occurred, and we here focus on two types of
errors. One is on the red face of the cube, where the
pixels of the range image cannot match one-to-one to
the pixels of the color image. To solve this problem, it
seems to be a good idea to increase the resolution of the
color image, which, however, is not appropriate for the
other type of errors. Namely, the second type of errors
has occurred at the pixels which are considered to be
occluded in the color image although we have employed
the occlusion process as described above. This problem
may be removed when the resolution of the range image
is higher than that of the color image, which however
is not appropriate for the first problem. There may be
several solutions of these problems, we in this report
present the following integration methods for extracting
the parts of the plants.

(2) Region Extracting

This approach is to map the target plant region (see
Sect.2.1) in the color image to the range image, which
is processed by the next step shown in the following
section.

Let us consider Fig.7(a), where the range data of the
target exists inside the pyramid with the vertex on the
origin of the camera coordinate system corresponding to
the angle of view of the target plant region.

From the relation shown in Fig.7(b), we derive the
equation of the correspondence between the angle of
view of the region and the direction of the scanning lay
of the LRF on the XL-ZL plane. The lines Z

(1)
L , Z

(2)
L

and Z
(3)
L in Fig.7(b) are represented as follows,

Z
(1)
L = (XL − lx) tan α + lz, (9)

Z
(2)
L = (XL − lx) tan β + lz, (10)

Z
(3)
L = XL tan θn, (11)

where

α = ψy − θc − θh/2, (12)
β = ψy − θc + θh/2, (13)

and θc is the orientation of the center of the target plant
region, and θh is the horizontal range (angle) of the
target plant region, which are obtained as follows (see
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(a) Relation between the camera and
the range coordinate system.
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(b) Top view.
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(c) Side view.
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(d) The plant region on the camera screen.

Figure 7. Relation between the coordinate system of the
LRF, the camera, and the camera screen.

Fig.7(d)),

θc =
(

ib + it
2

− io

)
Θ
Nx

, (14)

θh = (ib − it)
Θ
N x

, (15)

where (it, jt) and (ib, jb), respectively, are the posi-
tions of the upper right and the lower left pixels of the
target plant region, and Θ = 0.977[rad] ' 56[deg] is the
horizontal view angle of the camera. From the above
relations, the distances from the LRF to the crossing of
Z

(1)
L and Z

(3)
L , and that of Z

(2)
L and Z

(3)
L are expressed

as follows,

d
(h)

Z
(1,3)
L

=
lx tan α− lz

cos θn (tan α− tan θn)
, (16)

d
(h)

Z
(2,3)
L

=
lx tan β − lz

cos θn (tan β − tan θn)
, (17)

where we set




d
(h)

Z
(1,3)
L

:= ∞ if d
(h)

Z
(1,3)
L

≤ lz

d
(h)

Z
(2,3)
L

:= ∞ if d
(h)

Z
(2,3)
L

≤ lz
(18)

In the same way, the lines in Fig.7(c) are represented as
follows,

Y
(1)
L = (ZL − lz) tan γ + ly, (19)

Y
(2)
L = (ZL − lz) tan δ + ly, (20)

Y
(3)
L = ZL tanφm, (21)

where,

γ = ψx − φc + φv/2, (22)
δ = ψx − φc − φv/2, (23)

φc =
(

jb + jt

2
− jo

)
Φ
Ny

, (24)

φv = (jb − jt)
Φ
Ny

, (25)

and Φ = 0.733 ' 42[rad] is the vertical view angle of
the camera. Moreover the distances of the crossing of
Y

(1)
L and Y

(3)
L , and that of Y

(2)
L and Y

(3)
L on the YL-ZL

vertical plane shown in Fig.7(c) are derived as follows,

d
(v)

Y
(1,3)

L

=
lz tan γ − ly

cos φm (tan γ − tan φm)
, (26)

d
(v)

Y
(2,3)

L

=
lz tan δ − ly

cos φm (tan δ − tanφm)
, (27)

where we set




d
(v)

Y
(1,3)

L

:= ∞ if d
(v)

Y
(1,3)

L

≤ lz,

d
(v)

Y
(2,3)

L

:= ∞ if d
(v)

Y
(2,3)

L

≤ lz.
(28)

If the range data (θn, φm, dnm) fulfill the following equa-
tions,

d
(h)

Z
(1,3)
L

< dnm < d
(h)

Z
(2,3)
L

,

d
(v)

Y
(1,3)

L

< dnm < d
(v)

Y
(2,3)

L

,
(29)

the pixel (θn, φm) of the range image is supposed to
be in the target plant region. By applying the above
integration method to the target plant region shown in
Fig.4(a) and the range image shown in Fig.5, we have
got the result as shown in Fig.8. The integration result
is useful for extracting the features of the target plant
as shown the next section.



Figure 8. Example of a extracted range image corre-
sponding to the target plant region of the camera
image (130× 113 [pixel]).

(a) c1 (b) c2 (c) c3

(d) c4 (e) c5

Figure 9. Clustered range images.

3.2 Clustering of range image

In order to recognize a feature of a target plant, we
extract several sub-areas from the range image inte-
grated via the method presented in the previous sec-
tion, where each sub-area consists of pixels adjacent each
other and |dnm − dn′m′ | of the adjacent pixels (θn, φm)
and (θn′ , φm′) is less than a certain value (6[mm]), and
the number of the pixels in the sub-area are more than
a certain number (100[pixel]), where the wall and the
bowl were deleted on the basis of the number of data
points. The extracted sub-areas are shown in Fig.9.

4. Competitive Neural Network

For detecting the features of the target plant whose
shape and size change with view points, we employ the
CNN [10] (see Fig.10) which can achieve the invariant
recognition to linear and/or nonlinear coordinate trans-
formations.

4.1 Structure

The CNN consists of a number of clusters, each
of which has competitive cells with a N2-dimensional

�������

���	�
����
���
�����������
��	������


����� �����
�
�  "!� � !

#%$'&
� � !
� #%$(&

�  "!

)+*-,+.0/�132�45*7698:13;=<-6
> <-)?*A@�.0)+/�,+.085<-1
< > 851�B=C3.�D�*-,+.0<-)

�E����
��������F�EG�����
��	�
��G���HI
��F�E�F�KJ?
���
��	�
���������
�	�
�L��
������������	
�M��E���(G�M
N G��O
QP?���������F�E���L��R�
��E��H(���
JS
�����G��T�FG���R�
��

��
�����S��
��FM�G���U

Figure 10. Competitive neural network.

(a) q(1)(x) (b) q(2)(x)

Figure 11. Template patterns of (a) a leaf and (b) a stalk
are binary image consists of 64 × 64 pixels. These
template patterns were made from a real leaf and
stalk of the target plant.

weight vector w
(f)
k ∈ RN2

(k ∈ K, f ∈ F, N = 64)
and an integration cell, where K = {1, · · · , |K| = 200}
and F = {1, · · · , |F | = 2} are the sets of indices of the
competitive cells and the clusters (or the features), re-
spectively. The input to the CNN at the learning phase
is the transformed template patterns q(f)(x) which are
shown in Fig.11, and that at the recognition phase is
the image of the extracted sub-area.

4.2 Learning

The weight vectors w
(f)
k =

(
w

(f)
k1 , · · · , w

(f)
kN2

)T

(k ∈
K) of the competitive cells in the fth cluster which cor-
responds to the fth feature are trained with the trans-
formed and normalized patterns in

P
(f)
G =

{
q(f)(g(x))

/
‖q(f)(g(x))‖

∣∣∣∣g ∈ G

}
,

by means of the competitive algorithm described below.
Here, the projective transformation g(·) is nonlinear co-
ordinate transformation given by

g(x) =
Ax + b

pT x + 1
(30)

where

A =
(

a11 a12

a21 a22

)
, b =

(
b1

b2

)
, p =

(
p1

p2

)
,

a11, a12, a21, a22, b1, b2, p1, p2 ∈ R. In order to obtain
the invariant recognition ability for various coordinate
transformations, the CNN employs the CRL (Competi-
tive Reinitialization Learning) method for vector quan-
tization (see [11] for details of CRL).

The weight vectors after the training in the 1st and
2nd cluster are shown in Fig.12, which shows that
the network have learned various projective coordinate
transformation patterns, where the weight vectors in
each cluster, respectively, have been trained with 1000
randomly generated projective transformation patterns
of the template patterns.

4.3 Recognition

At the recognition phase, the input vector xs ∈
RN2

(s = 1, 2, · · · ) to the network is extracted with
a N × N [pixel] rectangle window which moves a few
pixel at a time from the clustered range image ct (t =



(a) w
(1)
1 −w

(1)
20 (b) w

(2)
1 −w

(2)
20

Figure 12. Weight vectors trained with the CRL. (a)
leaves and (b) stalks.

Figure 13. Recognition result. The marks of rectan-
gle and plus represent the positions of leaves and
stalks, respectively.

1, 2, · · · ). When the xs is entered to the net, each cell
calculates the inner product between the weight vector
and the input vector, and the integrated cell selects and
outputs the value of the maximum inner product as fol-
lows,

y(f) (ct) = max
k,s

(
xs

‖xs‖ ·w
(f)
k

)
. (31)

Thus, this equation shows that the inner product gives
the maximum value when xs is contains q(f)(g(x)),
and the number f̄ with the maximum output y(f̄)(ct)
is judged to be the number of the recognized feature.
Here, we decide whether or not the input pattern xs

matches with q(f)(g(x)) by means of the condition:

y(f) (ct) ≥ sth, (32)

where sth represents a threshold of the matching ratio,
and we set sth = 0.8 in the following experiment.

As a result of applying the above recognition pro-
cessing by the network to the clustered range images, c3

and c5 have been recognized as a leaf, c4 has been rec-
ognized as a stalk, and c1 and c2 have been recognized
a leaf and a stalk, respectively. The figure which unified
these results is shown in Fig.13. This result shows that
the features of the target plant have been recognized
correctly. Moreover, since this recognition processing
was performed on the range data image, the distance to
each recognized feature part can also be known.

5. Concluding Remarks

We have presented an image processing system which
consists of a LRF and a PTZ camera for capturing a

color and a range images of a target plant, and estimated
two kinds of the integration method of those measure-
ment data. Moreover, we have presented the recognition
method to classify leaves and stalks of a target plant by
using a competitive neural network.
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