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ABSTRACT
In this paper, we propose a 3-D object recognition
method for range datasets obtained by a LRF (Laser
Rangefinder). Since the resolution of the measured data
from the LRF changes according to the distance from
the LRF to the target object, the memorized template
dataset and the measurement dataset can hardly be cor-
responded each other in general, and then the computa-
tional cost of matching the datasets is very high and it
is difficult to execute the matching stably. To overcome
these problems, we propose an algorithm using singular
value decomposition (SVD) for identifying 3-D affine
transformation between the memorized and the mea-
sured datasets with high speed and stability Moreover,
through numerical simulations and actual experiments,
we demonstrate that our method is able to achieve sta-
ble and robust recognition of range datasets.

Keywords: Computer vision, Laser Rangefinder, Esti-
mating 3-D affine transformation, 3-D Pattern Match-
ing, Singular Value Decomposition.

1. INTRODUCTION

Recently, in computer vision applications, the object
recognition methods for 3-D datasets obtained by a LRF
(Laser Rangefinder) (for example [1], [2]) are proposed
[3], [4]. The global and local shape matching metrics
for free-from curves and surfaces as well as point sets
were described in these researches. The problem is for-
malized as follows: we consider given two point pat-
terns (sets of points) X =

�
a1,a2, · · · ,a|P |

	
and Y =�

b1, b2, · · · , b|Q|
	

in 3-D space, and we want to find
the similarity transformation parameters (R:rotation,
t:translation, c:scaling) giving the minimum value of the
RMSE (root mean squared error) e(R, t, c) of these two
point patterns,

e(R, t, c) =
1

|P |
1

|Q|
|P |X
p=1

|Q|X
q=1

min
p∈P,q∈Q

‖ap − (cRbq + t)‖, (1)

where P = {1, 2, · · · , |P |} and Q = {1, 2, · · · , |Q|} are
sets of indices of data point, and |P | 6= |Q|. In order
to solve this problem, the ICP (Iterative Closest Point)
algorithm [3] has been proposed. This algorithm per-
forms matching of the memorized (or template) and the
measured datasets and estimates parameters of 3-D co-
ordinates transformation by a gradient method which
minimizes RMSE. However, in ICP algorithm, a deteri-
oration of resolution according to the measured distance

of actual range sensor, the lack of data points, etc. are
not taken into consideration. On the other hand, Na-
gao, et al. [4] have proposed a method for reduction of
influence of the deterioration of resolution for the actual
LRF datasets. However, this method needs many pre-
processings for the measured data and the adjustment
of parameters. Furthermore, from the point of view of
recognition ability of human being, there are researches
for abstraction and recognition of 2-D and/or 3-D data
using artificial neural networks [5], [6]. However, these
have tackled by the appearance based approach, and
have not used the 3-D datasets for data matching di-
rectly. Therefore, we propose a method of estimating
the 3-D affine transformation parameters between the
template and the measured data sets at high speed and
stably using the result of SVD (singular value decompo-
sition) analysis of them. Further, we propose the robust
matching method of the datasets which have difference
resolutions. Moreover, through numerical simulations
and experiments, we demonstrate that our method is
able to achieve stable and robust recognition for actual
measured datasets of LRF.

2. 3-D MATCHING USING SVD

Invariance of SVD for 3-D Rotation

Let A =
�
a1, · · · ,ap, · · · ,a|P |

�T ∈ R|P |×3 be a matrix
consisting of the points ap ∈ X in 3-D space, and let
Â , ART be its rotated matrix where the rotation
matrix R , R(θx)R(θy)R(θz) defined by the rotation
angle θx (resp. θy, θz) around the x-axis (resp. y-axis,
z-axis).

Now we show that the results of SVD of these matrices
have invariance to the 3-D rotation. First, the SVD of
the matrix A and the matrix Â are

A = UDV T , (2)

Â = ÛD̂V̂
T
, (3)

where the left singular matrices are U , Û ∈ RL×3, the
right singular matrices are V , V̂ ∈ R3×3, and the sin-
gular matrices are

D = diag(d1, d2, d3) ∈ R3×3, (d1 ≥ d2 ≥ d3 ≥ 0), (4)

D̂ = diag(d̂1, d̂2, d̂3) ∈ R3×3, (d̂1 ≥ d̂2 ≥ d̂3 ≥ 0). (5)

Since R is orthogonal,

ÂÂ
T

= ARTRAT = AAT . (6)



On the other hand,

AAT = UD2UT , (7)

ÂÂ
T

= ÛD̂
2
Û

T
. (8)

Thus, from Eq.(6)-(8),

D = D̂, (9)

U = Û , (10)

are obtained [7], [8]．Namely, the left singular matrix
and the singular matrix are invariant to 3-D rotation.
Therefore, only the right singular matrix is transformed
by the rotation matrix as follows,

RV = V̂ . (11)

Moreover, since V is orthogonal, the rotation matrix R
is calculated by

V̂ SV T = RV SV T = R, (12)

where

S =

8<: I if det
�
V̂
�

det (V ) = 1,

diag(1, · · · , 1,−1) if det
�
V̂
�

det (V ) = −1.

(13)
This matrix S was introduced by Umeyama[9] in order
to prevent the reflection matching.

Estimation of Rotation Matrix

Next, we consider the matching of the template data

matrix C̃ =
�
c̃1, · · · , c̃|P |

�T
and the actual range data

matrix C̃
′

=
�
c̃′1, · · · , c̃′|Q|

�T
obtained by the LRF,

where |P | 6= |Q| and these are without correspondence.
Here, we define matrices C̄ and C̄′ consisting of the

mean vector of C̃ and C̃
′
, and variances as follows:

C̄ , (�C , · · · ,�C)T ∈ R|P |×3, (14)

C̄′ , (�C′ , · · · ,�C′)
T ∈ R|Q|×3, (15)

�C , 1

|P |
|P |X
p=1

c̃p, (16)

�C′ , 1

|Q|
|Q|X
q=1

c̃′q, (17)

σ2
C , 1

|P |
|P |X
p=1

‖cp − �C‖2, (18)

σ2
C′ , 1

|Q|
|Q|X
q=1

‖c′q − �C′‖2. (19)

Further, we obtain the normalized matrices about trans-
lation and scaling by

C ,
�
C̃ − C̄

��
σ2

C =
�
c1, · · · , c|P |

�
, (20)

C′ ,
�
C̃
′ − C̄′

��
σ2

C′ =
�
c′1, · · · , c′|Q|

�
. (21)

When the covariance matrices of C and C′ given by,

W , CTC =

|P |X
p=1

cpcT
p , (22)

W ′ , C′TC′ =

|Q|X
q=1

c′qc
′T
q , (23)

are almost same, namely W 'W ′, we have

V C
′ ' V C , (24)

DC
′ 'DC , (25)

where

C = UCDCV T
C , (26)

C′ = UC′DC′V T
C′ , (27)

and

W = V CD2
CV

T
C , (28)

W ′ = V C′D2
C′V

T
C′ . (29)

Then the rotation matrix of C′′ , C′RT is able to
estimate as follows,

V C′′V T
C = (RV C′)V T

C ' �ŘV C

�
V T

C = Ř, (30)

where

C′′ , C′RT = UC′DC′ (RV C′)
T = UC′DC′V T

C′′ . (31)

In this research, we call Ř the estimated rotation ma-
trix.

Data Matching Algorithm

First, the nth template pattern

A(n) =
�
a(n)

1 , · · · ,a(n)
p , · · · ,a(n)

|P |

�T

∈ R|P |×3 (32)

is generated in advance, where n ∈ N = {1, · · · , |N |}.
These patterns are generated from CAD (computer-
aided-design) model or actual measured data points,
and are generated so that the mean vector and the vari-
ance of them should be as follows:

�A(n) =
1

|P |
|P |X
p=1

a(n)
p = 0, (33)

σ2
A(n) =

1

|P |
|P |X
p=1




a(n)
p − �A(n)




2

= 1. (34)

Moreover, the SVD

A(n) = UA(n)DA(n)V T
A(n) , (35)

are calculated and V A(n) is registered.



Next, the matrix of measured points of the target
object is generated as follows:

B̃
(m)

=
�
b̃
(m)

1 · · · b̃
(m)

q · · · b̃
(m)

|Q|

�T

=

0B@ b̃
(m)
1x · · · b̃

(m)
qx · · · b̃

(m)

|Q|x
b̃
(m)
1y · · · b̃

(m)
qy · · · b̃

(m)

|Q|y
b̃
(m)
1z · · · b̃

(m)
qz · · · b̃

(m)

|Q|z

1CAT

(36)

where m ∈ M = {1, 2, · · · , |M |} is index of the mea-
sured pattern. Then this matrix is normalized by using
the mean vector and the variance of elements as follows,

B(m) =
�
B̃

(m) − B̄(m)
��

σ2
B(m)

=
�
b(m)
1 , b(m)

2 , · · · , b(m)
j

�T

. (37)

Here, since the infrared rays irradiated by the LRF are
not uniformly distributed on a target object depending
on change of the conditions to measure, the mean vector
of the measured pattern is calculate by means of the
maximum and the minimum value of elements of the
matrix as follows,

B̄(m)
= (�B(m) , · · · ,�B(m))

T ∈ R|Q|×3, (38)

�B(m) =
1

2

0BBB@
max
q∈Q

{b̃qx}+ min
q∈Q

{b̃qx}
max
q∈Q

{b̃qy}+ min
q∈Q

{b̃qy}
max
q∈Q

{b̃qz}+ min
q∈Q

{b̃qz}

1CCCA , (39)

σ2
B(m) =

1

|Q|
|Q|X
q=1




b(m)
q − �B(m)




2

. (40)

Next,

B(m) = UB(m)DB(m)V T
B(m) (41)

is calculated and the estimated rotation matrix between
A(n) and B(m) is derived by using the right singular
matrices of Eq.(35) and Eq.(41) as follows,

Ř(nm)
= V B(m)SV T

A(n) , (42)

where S is calculated by Eq.(13). Further, the inverse
rotation pattern of B(m) is calculated by using this es-
timated rotation matrix as follows,

B̌(nm)
= B(m)Ř(nm)

=
�
b̌(nm)
1 , b̌(nm)

2 , · · · , b̌(nm)
j

�T

. (43)

At last, the best matching εth template pattern for mth
measured pattern is decided by

ε = argmin
n∈N

0@ 1

|P |
1

|Q|
|P |X
p=1

|Q|X
q=1

min
p∈P,q∈Q




a(n)
p − b̌(nm)

q




1A . (44)

Since this algorithm performs the matching between the
template and the measured patterns at once using the
estimated rotation matrices, the matching result can be
obtained with high speed and stability.

3. NUMERICAL SIMULATION

Here, the validity of the 3-D object recognition method
proposed in this research is estimated by the numerical
simulations.

Test Patterns

The template and the test patterns are shown in
Fig.1(a)-(d). The template pattern shown in Fig.1(a) is
a right isosceles triangle consisting of 4995 data points,
and the one of its vertex was cut so that the result of
SVD is stable. Moreover, Fig.1(b) and (d) are a rect-
angle and a circle consisting of 9829 and 7663 points,
respectively, and those parts were cut for the same rea-
son. Especially, the #2 test pattern shown in Fig.1(c)
was made of the template pattern by rotating 60 de-
grees around each axis. Furthermore, in order not to
make the 3rd singular value not small, these patterns
were generated by giving a certain value at random in
the direction perpendicular to the plane.

Result of Simulations

The rotation matrix used for generating the #2 test
pattern from the template pattern was

R =

0@ 0.250 −0.058 0.966
0.433 0.899 −0.058
−0.866 0.433 0.250

1A , (45)

and the estimated rotation matrices between the tem-
plate and the test patterns were

Ř(11)
=

0@ 0.139 −0.216 0.967
0.937 0.344 −0.058
−0.320 0.914 0.250

1A , (46)

Ř(12)
=

0@ 0.250 −0.058 0.967
0.433 0.899 −0.058
−0.866 0.433 0.250

1A , (47)

Ř(13)
=

0@ 0.248 −0.065 0.967
0.458 0.886 −0.058
−0.853 0.457 0.250

1A . (48)

Moreover, the test patterns rotated by using the above
rotation matrices are shown in Fig.2(a)-(c). First, it
was found from Eq.(45) and Eq.(47) that the rotation
matrix between congruent patterns was estimated cor-
rectly. Further, it was found from Fig.1(b) and (d)
that the rotation matrices between the patterns which
have different shapes were also estimated appropriately.
Next, the RMSE between the template and the test pat-
terns are shown in Tab.I. It was found from the result
that the estimation of 3-D coordinates transformation
and 3-D pattern matching could be achieve correctly by
the proposed method.

4. EXPERIMENT

In this section, we demonstrate the ability of the pro-
posed method for the actual measured points without
correspondence.



(a) Template pattern.

(b) Test pattern #1.

(c) Test pattern #2.

(d) Test pattern #3.

Fig. 1. A template and test patterns. The arrows represent the

orientation of the singular vectors.

TABLE I

Matching result of the numerical simulations.

Test pattern #1 #2 #3
RMSE 0.118 0.000 0.149

(a) Rotated test pattern #1.

(b) Rotated test pattern #2.

(c) Rotated test pattern #3.

Fig. 2. Rotated test patterns. The arrows represent the orienta-

tion of the singular vectors.

Measurement of 3-D Object by LRF

We used the LRF (LMS200 from SICK, Inc.) which
basically scans the horizontal 2D plane to measure the
distance to the object, where the maximum measure dis-
tance is 8191[mm], and the maximum scanning range
is 180[deg] with angular resolution 0.25[deg]. In order
to scan 3-D space, we have designed to make of a sus-
pension unit [1], [2] for rotating the LRF vertically by
means of a geared stepping motor with angle resolution
0.05[deg]. Thus, we can obtain the 3-D position xij

from the measured distance dij for the horizontal angle
θi and the vertical rotation angle φj as follows,

xij =

0@ dij cos φj cos θi

dij sin φj

dij cos φj sin θi

1A =

0@ xij

yij

zij

1A (49)

where we use the angles given by

θi = 0.25i + θ0 (i = 0, 1, · · · , 400) (50)

φj = 0.25j + φ0 (j = 0, 1, · · · , 400) (51)

where θ0 = 40[deg] (resp. φ0 = −40[deg]) is the start-
ing horizontal (resp. vertical) scanning angle. Then by
using these measured points, the 3-D dataset

Xa = {xij} (52)



Fig. 3. LRF and suspension unit.
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Fig. 4. LRF coordinate system.

was obtained, and the measured pattern was generated
as follows,

B̃ =
�
b1, · · · , bq, · · · , b|Q|

�T
, bq ∈Xa, (53)

where the point bq was the measured point on the target
object.

Template and Measured Datasets

Fig.5(a) shows the one of the template pattern
and Fig.5(b)-(d) show the measured patterns of
70[mm]×45[mm] rectangle papers which were set
600[mm] ahead of the LRF, and were rotated 20[deg],
40[deg], and 60[deg] around y-axis, respectively (see
Fig.4). Moreover, these test patterns were already nor-
malized by Eq.(37). Furthermore, we prepared the two
more template patterns, i.e., the right isosceles triangle
and the circle template patterns used in the above nu-
merical simulations besides the rectangle template pat-
tern.

Result of Experiments

The estimated rotation matrices between the template
and the measured patterns were calculated, and the
measured patterns were rotated by these estimated ro-
tation matrices. The rotated measured patterns which
correspond to the rectangle template pattern are shown
in Fig.6(a)-(c). These results show that each principal
components of the patterns corresponded with that of

(a) Rectangle template pattern (9996 points).

(b) Measured pattern of the object rotated 20[deg]
(1792 points).

(c) Measured pattern of the object rotated 40[deg]
(1288 points).

(d) Measured pattern of the object rotated 60[deg]
(777 points).

Fig. 5. Measured patterns. The arrows represent the orientation

of the singular vectors.

the template pattern appropriately. Next, the matching
resuts between the template pattern and these measured
patterns are shown in Tab.II. It was found from these
results that the RMSE of the rectangle template pattern
and the measured patterns were minimum for all rotated
angle, so that the shape of the measured patterns had
been discriminated correctly. Moreover, since the num-
ber of the measuring point on the object decreases as
the inclination to the LRF of the object becomes large,
there is a tendency for discernment of the shape of the
measured patterns to become difficult.



(a) Rotated measured pattern
of the 20[deg] rotated object.

(b) Rotated measured pattern
of the 40[deg] rotated object.

(c) Rotated measured pattern
of the 60[deg] rotated object.

Fig. 6. Rotated measured patterns. The arrows represent the

orientation of the singular vectors.

5. CONCLUDING REMARKS

We have presented the 3-D data matching method. As
the results of the numerical simulations and the experi-
ments, we could find the parameters of 3-D affine trans-
formation which match the registered template pat-
terns to the measured patterns appropriately, and could
discriminate the shape of patterns by the presented
method. Furthermore, there is problem which we would
like to tackle, such as the construction of the neural net-
work model associates the recognition system of human
being and the presented method. As future work, the
application of the presented method to recognition of
the object which consists of plural planes and curved
surfaces can be considered. On the other hand, for the
actual application of this method, the data processing
algorithm for data extraction of the target object from
measured datasets is also required.
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