
Adaptive PSO for Online Identification of Time-Varying Systems

TAKESHI NISHIDA and TETSUZO SAKAMOTO
Kyushu Institute of Technology, Japan

SUMMARY

Novel adaptive PSO (particle swarm optimization)
algorithms called OPSO (online PSO) and εPSO are pro-
posed. These algorithms are designed to prevent increasing
of calculation cost in order to embed into online systems,
and they have high adaptive performances to environmental
changes. The efficiency of the proposed PSO algorithms are
demonstrated by numerical simulation and the online iden-
tification of an actual dynamic system. © 2012 Wiley Peri-
odicals, Inc. Electron Comm Jpn, 95(7): 10–18, 2012;
Published online in Wiley Online Library (wileyonlineli-
brary.com). DOI 10.1002/ecj.11391

Key words: adaptive PSO; time-varying systems;
online identification; OPSO; εPSO.

1. Introduction

PSO (Particle Swarm Optimization) is a statistical
method of search for optimal solutions. This approach
imitates swarm intelligence and is efficient for nonlinear
programming problems [1]. The performance of PSO, of-
fering robust and fast search for optimal solutions to non-
linear problems, nondifferentiable problems, multimodal
problems, etc., has been verified by many studies, and a
number of applications have been implemented [2]. PSO
was first proposed for solving static optimization problems.
Recently, the method was modified to deal with real dy-
namic systems, and new PSO algorithms can adapt to
environmental changes caused by observation noise or time
variation of a system, that is, to a varying search space
[3–9]. Such PSO algorithms are designed for time-varying
(dynamic) search spaces, and emphasis is placed on strate-
gies for detecting environmental changes and avoiding
convergence to local minimum.

On the other hand, while offering high performance,
PSO is based on stochastic global search using numerous
particles, which results in poor computational efficiency
compared to conventional gradient methods. In order to

apply PSO to a real online system, prompt response to
environmental changes is required, and the calculations at
every step must be completed within the sampling period,
depending on the system configuration. Therefore, in addi-
tion to environmental adjustability, reduction of computa-
tional complexity is important for PSO incorporated into
online systems. However, no adaptive PSO algorithms with
reduced complexity intended for online systems have been
proposed so far. Thus, in this study, we propose two PSO
algorithms with adaptability to environmental changes
while restraining increases in computational complexity. In
addition, we demonstrate the effectiveness of the proposed
algorithms compared to conventional methods by numeri-
cal simulations and experiments.

The paper is organized as follows. First we explain
PSO in Section 2 and give a review of existing PSO algo-
rithms in Section 3. Then we propose two types of PSO
algorithms applicable to online systems in Sections 4 and
5, and discuss the strategic features of the proposed meth-
ods in Section 6. We next evaluate the performance of the
proposed algorithms by numerical simulations in Section
7, and demonstrate their effectiveness by experiments with
a real system in Section 8. A summary of the study is given
in Section 9.

2. PSO Algorithm

PSO is an algorithm in which solutions are discov-
ered by moving numerous search points, called particles,
over the search space based on the past action history and
the dynamically adjusted velocity. Consider the optimiza-
tion of the following optimization function f: Rl → R.

In a conventional PSO algorithm to solve this problem [2],
the position and velocity of particles in the search space are
denoted by xk

(m) ∈ Rl and vk
(m) ∈ Rl, respectively. Here m =

[1, M] ∈ N+ is the number of the particle, and k = 1, 2, . . .
is a discrete time point. These are updated as follows.

 © 2012 Wiley Periodicals, Inc.

Electronics and Communications in Japan, Vol. 95, No. 7, 2012
Translated from Denki Gakkai Ronbunshi, Vol. 131-C, No. 9, September 2011, pp. 1642–1649

(1)

10

Given: Parameters ω, c1, c2 are specified. x0
(m) and

v0
(m) are set using uniform random numbers. The range of

uniform random numbers is adjusted to the search space.
Step 1: The position of each particle is evaluated by

using the minimizing scalar function f(⋅), and the position
of every particle producing the smallest fitness value at the
current instant (usually called pbest),

is saved together with the fitness value f(x̂(m)). Here :=
denotes substitution.

Step 2: The position producing the smallest fitness
value in the entire swarm

is called gbest, and is recognized as the optimal solution;
its fitness value f(x̂g) is stored.

Step 3: The positions and velocities of the particles
are updated by the equations

Here r1, r2 = [0, 1] are uniform random numbers.
Step 4: Step 1 is repeated with k := k + 1 until the

convergence condition is satisfied.
In the above conventional PSO algorithm, f(x̂g) de-

creases monotonically, as is obvious from Eq. (3). Now
consider the case in which the evaluation function changes
from f(⋅) to f∗(⋅) so that the optimal solution changes from
x̂g to x̂g∗. In conventional PSO, variation of the evaluation
function is not considered, and therefore the fitness value
f(x̂g) is not updated unless f(x̂g∗) < f(x̂g), and in this case x̂g

becomes trapped in an inappropriate solution. In particular,
when the evaluation function f(x̂g) converges after a suffi-
cient time period, such environmental changes have an even
higher probability of remaining undetected. In other words,
time variation of the evaluation function f(⋅) is not assumed
in the conventional PSO algorithm, and therefore optimal
solutions cannot be updated according to environmental
changes such as moving of the optimal solution or a change
of evaluation function.

3. Related Research

3.1 Adaptive PSO

Here we give an overview of existing PSO algorithms
proposed to deal with environmental changes.

In early studies [3, 4], the memory of all particles was
reset periodically, and the pbest values were rearranged
according to the current position vectors. However, it was
pointed out that it was difficult to determine the initializa-
tion frequency [8]. That is, so long as the periodicity of
environmental changes is not known in advance, the parti-
cle memories must be reset frequently so as to assure
adaptation to the environment; however, frequent initializa-
tion degrades convergence speed and destabilizes the
search.

Then APSO (Adaptive PSO) [5] was proposed using
the notion of sentries to detect and respond to environ-
mental changes. The sentry particles are designed specially
to detect environmental changes, and are distributed over
the search space. When a sentry particle detects an environ-
mental change, it informs the other sentry particles, and the
ordinary particles are forced to reset their memories. How-
ever, a sentry particle can detect local changes only where
it resides, and is unable to distinguish between environ-
mental changes and observation noise; as a result, the
memories of all particles are reset too often in real applica-
tions with observation noise.

After that, new PSO algorithms with robustness to
environmental changes were proposed: for example, CPSO
(Charged PSO) [6], which introduces a model based on
repulsion and attraction between particles to deal with
dynamic environments, and MSO (Multi-Swarm Optimi-
zation) [7], which combines multiple swarms. In MSO,
multiple swarms are used to avoid convergence of all par-
ticles to the same optimal solutions. These algorithms mod-
ify the search to make it more efficient and to allow it to
escape from local minimum. However, continuous or regu-
lar environmental changes are not assumed; as a result all
particles are initialized when an environmental change is
detected, and the problem of excessive initialization re-
mains. In addition, multiple parameters are used to deter-
mine the repulsion between particles, and frequent
adjustment of such parameters adds to computational com-
plexity.

To solve the above problems, a number of PSO
algorithms have been developed recently. One of these is
DAPSO (Distributed Adaptive PSO) [8], which adapts to
continuous environmental changes by multiplying the par-
ticle fitness by a constant. In this algorithm, adaptation to
environmental changes, with no significant increase in
computational complexity, is made possible due to a simple
procedure in which pbest is multiplied by a constant slightly
greater than 1 for minimum search at the current instant. In
addition, in MPSO (Modified PSO) [9], the particles are
evaluated at every instant with respect to environmental
changes and the move of the optimal solution in order to
achieve accurate particle updating. This algorithm in-
creases the computational complexity but provides prompt
adaptation to continuous environmental changes.

(2)

(3)

11

However, none of the previous studies considers re-
duction of computational complexity, which is important
for implementation in real online systems.

4. OPSO

We configured the following OPSO (Online PSO)
algorithm in which a time-varying evaluation function
fk(⋅) is used to explicitly express environmental changes,
and pbest and gbest are assumed to be time-varying values,
respectively, x̂k

(m) and x̂k
g.

4.1 Algorithm

Given: Parameters ω, c1, c2 are specified. x0
(m) and

v0
(m) are set using uniform random numbers. The algorithm

starts at Step 1 at k = 1.
Step 1: The optimal solutions of every particle at the

previous instant x̂k−1
(m) are reevaluated at the current instant,

and the smallest value is found:

Step 2: The velocity and position of every particle are
updated:

Step 3: The position of every particle producing the
smallest fitness value is saved together with this value
fk(x̂k

(m)).

Step 4: The best solution in the entire swarm is found:

This is taken as the OPSO estimate at instant k.
Step 5: The algorithm returns to Step 1 at k = k + 1.

4.2 Features and properties of OPSO

In order to find the best solution for time-varying
function fk(⋅), the previous values of pbest are first reevalu-
ated at Step 1 using the current evaluation function, and the
corresponding particle position x~k

g is found. This particle
position is the pbest closest to the best solution for the
current evaluation function. Since the evaluation function
varies with t ime, it might happen so that
fk(x̂k−1

(m)) ≥ fk−1(x̂k−1
(m)); in this case, fk(x̂k−1

(m)) does not decrease
monotonically. As a result, the fitness value fk(x̂k

(m)) of

x̂k
(m) calculated in Step 3 does not decrease monotonically,

nor does the fitness value fk(x̂k
g) of x̂k

g calculated at Step 4.
Thus, the procedure introduced at Step 1 solves the problem
of monotonic decrease of f(⋅) that prevented adaptation to
environmental changes in the conventional PSO; in the
proposed algorithm, the environmental changes are incor-
porated by updating pbest and gbest.

At Steps 2 and 3, the velocities and positions of the
particles are updated using x~k

g. Finally, at Step 4, the updated
particles are evaluated, the personal best solutions x̂k

(m) and
global best solution x̂k

g are obtained, and the algorithm
proceeds to the next time point. Due to the introduction of
Step 1, updating and evaluation of the particle velocity and
position are performed in reverse order compared to the
conventional PSO. That is, the particles are updated at Step
1 so as to reflect adaptation to environmental changes, and
after that, every particle is evaluated to obtain the best
solution at the current instant.

OPSO has the following features: (1) the fitness
values of pbest and gbest do not decrease monotonically
due to the use of a time-varying evaluation function; (2) no
design parameters are added; (3) the calculation procedures
are simple and the increase of computational complexity is
restrained; (4) compared to the conventional PSO, the in-
crease of computational complexity in OPSO is confined to
Step 1.

5. εPSO

In the εPSO algorithm described below, the problem
of a monotonic decrease of f(⋅) in the conventional PSO is
solved by introduction of a mechanism to forget the optimal
value (pbest) with the passage of time. This algorithm
produces an easier procedure and allows further restraint of
the increase in computational complexity than OPSO.

Just as in OPSO, a time-varying evaluation function
fk(⋅) is used to explicitly express environmental changes,
and pbest and gbest are assumed to be time-varying values,
respectively x̂k

(m) and x̂k
g.

5.1 Algorithm

Given: Parameters ω, c1, c2 are specified. x0
(m) and

v0
(m) are set using uniform random numbers. The algorithm

starts at Step 1 with k = 1.

Step 1: A small positive constant is added to the
fitness value of the best solution and the past fitness value
is forgotten:

Here := denotes substitution.
Step 2: The position of every particle producing the

smallest fitness value,

(4)

(5)

12

is saved together with the fitness value fk(x̂k
(m)).

Step 3: The best solution of the entire swarm is saved:

Step 4: The positions and velocities of the particles
are updated:

Step 5: The algorithm returns to Step 1 at k = k + 1.

5.2 Features and properties of εPSO

First a small number ε is added to fk−1(x̂k−1
(m)) at Step

1. The past fitness value is gradually increased over time so
that the fitness values of pbest for every particle are forgot-
ten. This procedure makes it possible to discover optimal
solutions that have moved because of environmental
changes. For example, if the best solution x̂k

g has moved to
x̂k+l

g∗ at a time that is l steps after the environment changed
at some instant k, then the particles should search solutions
satisfying the following condition:

As the difference between both sides increases over time,
the particles move stochastically to find solutions in the
vicinity of x̂k+l

g∗ , so that the possibility of updating pbest
increases over time. In addition, when a particle finds an
optimal solution with the same fitness value as the past best,
the new solution is adopted.

However, the value of ε must be set properly when
using this algorithm. When ε is too small, adaptability
deteriorates, and when it is too large, solutions are forgotten
and re-discovered excessively frequently. However, εPSO
search is not sensitive to the value of ε so long as it is set
properly in a certain range, and the value can be adjusted
with relative ease via by trial and error.

As shown above, εPSO has the following features:
(1) the fitness value of gbest does not decrease monotoni-
cally because pbest is forgotten; (2) the only additional
parameter is ε; (3) processing is simple, and the increase in
computational complexity compared with the conventional
PSO is smaller than in OPSO.

6. Preservation Strategy for pbest and gbest

The preservation strategy for pbest and gbest is a
highly important element of adaptive PSO which affects the

adaptability to the environment. Here we discuss the strate-
gies adopted in OPSO and εPSO as compared to the exist-
ing algorithms mentioned in Section 3.

In the algorithms proposed in Refs. 3–7, pbest and
gbest are reset every time an environmental change is
detected, and the past memories of the particles are deleted.
This preservation strategy of pbest and gbest has been
shown to be inefficient [8].

On the other hand, DAPSO [8] allows the extraction
of new solutions with fitness values within a constant
multiple of the stored pbest. That is, the fitness values of
pbest are degraded by multiplying by a constant; this strat-
egy is intended to prevent pbest and gbest from sticking at
local minimums, and to provide adaptability to environ-
mental changes. The preservation strategy for pbest and
gbest in εPSO can be considered an extension of this
approach. That is, in εPSO, the degradation of the fitness
value of pbest is increased over time so that the adaptability
to the environment gradually improves. Due to this strategy,
εPSO offers better adaptability than DAPSO with nearly
the same computational complexity.

In MPSO [9], gbest and pbest are reevaluated at every
instant using a time-varying evaluation function, and the
particle velocity is corrected. The velocity is recalculated
thoroughly with respect to the positional relations of gbest
and pbest at the previous and current instants, which allows
accurate adaptation to environmental changes but results in
a significant increase in computational complexity. This
preservation strategy of pbest and gbest is simplified in
OPSO. Specifically, correction aiming at adaptation to en-
vironmental changes is restricted to reevaluation of pbest
and gbest so as to restrain the increase in computational
complexity. We may assume that the appropriate velocity
cannot be calculated within the current iteration in some
cases; on the other hand, this stochastic difference in speed
may be expected to converge to zero after sufficient time.

7. Numerical Simulation

We use a time-varying evaluation function to com-
pare the performance of the conventional adaptive PSO and
the two proposed algorithms.

7.1 Problem setting

Consider minimization of the following time-varying
function:

13

The shape and time variation of this function are illustrated
in Fig. 1. The evaluation function for the optimal solution
has the value 0; its position moves along a circle with its
center at (x1, x2) = (250, 250) and with a radius of 125, and
returns to the initial point in about 628 steps. The objective
of the PSO algorithms in this simulation is to continuously
track x̂k

g as the position of the optimal solution for an
evaluation function moving at a constant speed. In this
simulation we compare conventional PSO, CPSO, DAPSO,
MPSO, OPSO, and εPSO. In all the algorithms, the parame-
ters are ω = 0.729, c1 = c2 = 1.4955 in accordance with Ref.
10, and the number of particles is M = 100. The specific
parameters for every PSO algorithm are set as proposed by
the respective developers.† In εPSO, the constant ε is set
empirically to 0.1.‡

7.2 Adaptability

The trajectories of x̂k
g obtained by applying the algo-

rithms to the target function are shown in Fig. 2. The time
evolution of fk(x̂k

g) is illustrated in Fig. 3. As can be seen
from Figs. 2(a) and 3(a), in conventional PSO the updating
stops as soon as a minimum of f(x̂g) is found, and thus a
move of the solution position cannot be followed. As can
be seen from Figs. 2(b) and 3(a), in CPSO the particles are
initialized at every iteration and the trajectory of x̂k

g is
unstable. As shown in Fig. 2(c), DAPSO updates fk(x̂k

g) at a
certain interval, thus following the function variation. How-
ever, pulsations occur in the transition of fk(x̂k

g), which
results in distortion of the trajectory. In contrast, the distor-
tion of the fk(x̂k

g) trajectory is smaller in MPSO, as shown in
Fig. 2(d), and OPSO and εPSO offer smooth tracking of the

target function without trajectory distortion. In addition, as
can be seen from Fig. 3(b), MPSO, OPSO, and εPSO show
smaller transitions of fk(x̂k

g) than the conventional PSO,
CPSO, and DAPSO. However, the transitions of fk(x̂k

g) are
larger and include pulsations in the case of MPSO as
compared to OPSO and εPSO.

7.3 Computational complexity

The average processing time per step consumed by
the algorithms is shown in Fig. 4. The measurement was
performed using Vine Linux operated at a CPU clock speed

†In DAPSO, the parameter P is set to 2.0.
‡It was confirmed that adaptation became impossible when ε was set below
10–5. On the other hand, in this example with a continuously varying
evaluation function, PSO performance was degraded due to excessive
forgetting and rediscovery of solutions when ε was set large.

Fig. 2. Results of numerical simulation. (The red solid
line represents the trajectory of x̂k

g and the red circle
shows the position of x̂k

g at k = 471. The blue dots and
the green line segments represent the positions and

velocities of particles; the gray double circle represents
the position of the global minimum solution.) [Color

figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

Fig. 1. Target function (this function moves with
passage along the red line). [Color figure can be viewed

in the online issue, which is available at
wileyonlinelibrary.com.]

14

of 2.40 GHz. As indicated by these results, among MPSO,
OPSO, and εPSO, which demonstrated high adaptability in
the simulations, εPSO has the lowest computational com-
plexity. In addition, OPSO outperforms MPSO in adapt-
ability, with lower computational complexity.

The numerical simulations showed that OPSO and
εPSO proposed in this study are superior to existing adap-

tive PSO algorithms by virtue of higher adaptability and
lower computational complexity.

8. Experiments

Below we present experimental results obtained by
applying the proposed algorithms to an online system. We
performed the same experiments with MPSO and conven-
tional PSO for comparison.

8.1 Experimental object

The experiments were performed on the velocity
control system of a servo motor installed in a film transpor-
tation system. The parameters of the discrete transfer func-
tion were estimated online. Let the input be the torque
generated by the servo motor, and the output be the film
velocity. Assuming that the system dynamics can be ap-
proximated by a combination of zero-order hold and first-
order delay components, the discrete transfer function can
be expressed as follows:

Here Ta is the time constant and Ts (= 10 ms) is the sampling
time. Thus, the system output at instant k can be expressed
as

Here

In addition, xk ≡ (− ak, bk)T and zk ≡ (yk−1, uk−1)T. In
preliminary identification experiments, the nominal values
were Ta = 1.43 and K = 0.455; based on these values, a =
–0.993 and b = 3.16 × 10–3.

The time evolution of the system input and output in
the experiments is illustrated in Fig. 5. The motor torque

Fig. 3. Time evolution of fk(x̂k
g). [The results of

conventional PSO, CPSO, and DAPSO are shown in (a),
and the results of MPSO, OPSO, and εPSO are shown in

(b).] [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

(6)

(7)

(9)

(8)

Fig. 4. CPU execution time at each step. [Color figure
can be viewed in the online issue, which is available at

wileyonlinelibrary.com.] Fig. 5. Time evolution of system input and output.

15

was generated using a second-order filter. The reference
value was changed from 1.5 Nm to 2.0 Nm at 10 s. In this
experiment, the roll radius increases as film is reeled in, and
hence the system parameters vary over time. In addition,
the drive unit includes friction and other nonlinear dynamic
components, and therefore the system parameters vary non-
linearly when the reference value is changed. In this experi-
ment, the system parameter xk in Eq. (7) was estimated
online based on the input–output relationship in Fig. 5 using
different PSO algorithms.

8.2 PSO settings

The following evaluation function was applied to the
particles in every PSO algorithm:

Here I is the number of steps in backward evaluation; I was
set to 100. The common parameters for all algorithms were
set at ω = 0.729, c1 = 1.4955, c2 = 1.4955, M = 100. For
εPSO, the constant ε was set to 10−4 by trial and error. In
addition, the MPSO-specific parameter was set in accord-
ance with Ref. 9, that is, λ = 0.1.

8.3 Experimental results

First, the time evolution of gbest, that is, fk(x̂k
g), is

shown in Fig. 6. As can be seen from the diagram, gbest
decreases monotonically to converge to a certain value in
the conventional PSO; on the other hand, in the other PSO
algorithms, gbest increases and decreases over time. In
particular, modification of the reference value at 10 s af-
fected the input–output relation, and as a result, fk(x̂k

g)
increased and then decreased again due to adaptive parame-
ter estimation.

Figure 7 shows the time evolution of the difference
between the output obtained from the estimated parameter
x̂k

g and the actual output, that is, the estimation error
|yk − zk

Tx̂k
g| . As can be seen from the diagram, the conven-

tional PSO cannot adapt to time variation of the system, and
the estimation error grows over time; in contrast, the other
PSO algorithms provide accurate estimation of the system
output.

The time evolution of the estimate parameters ak and
bk is illustrated in Fig. 8. As can be seen from the diagrams,
gbest converges in the conventional PSO, and as a result,
the estimated parameters are not updated and deviate from
the nominal values. In contrast, in the other PSO algo-
rithms, parameter estimation adapts promptly to the system
change, and the estimated parameters agree well with the
nominal values.

Fig. 7. Estimation error |yk − zk
Tx̂k

g| . [Color figure can be
viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Fig. 6. Time evolution of fk(x̂k
g). [Color figure can be

viewed in the online issue, which is available at
wileyonlinelibrary.com.]

Fig. 8. Time evolution of estimated parameters. [Color
figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

16

Table 1 shows the average calculation time per sam-
pling period. Here the PC performance is the same as in the
simulations. As can be seen from the table, the computa-
tional complexity of OPSO and εPSO is 50.4% and 29.4%,
respectively, compared to MPSO. When PSO is used to
estimate objects with high-order response or control sys-
tems dealing with multiple subsystems, the time and re-
sources required for PSO calculations increase linearly or
exponentially, and hence reduction of computational com-
plexity is very important.

The above experiments showed that with OPSO and
εPSO algorithms proposed in this study, the same level of
optimization performance as in conventional PSO can be
achieved with lower computational complexity.

9. Conclusions

In this paper, we first explained that the conventional
PSO cannot adapt to observation noise and changes of
system parameters because the evaluation function f(⋅) de-
creases monotonically. To solve this problem, we proposed
OPSO and εPSO algorithms, which offer high adaptability,
while restraining the increase of computational complexity.
The former algorithm uses explicit representation of the
time variation of evaluation function, and includes a proce-
dure preventing the fitness value of pbest from monotoni-
cally decreasing. The latter algorithm solves the problem of
monotonic decrease by forgetting the past fitness values of
pbest. In addition, these algorithms are designed straight-
forwardly, which makes them suitable for online identifica-
tion of system parameters. We carried out numerical
simulations to verify the effectiveness of the proposed
algorithms by comparison with existing adaptive PSO al-
gorithms. In addition, we investigated the performance of
the proposed algorithms by experiments with an online
system. The results demonstrated that the proposed OPSO
and εPSO algorithms offer the same optimization perform-
ance as existing methods but with higher speed.

In our simulations we used the recommended pa-
rameters for existing PSO algorithms; in the future, detailed
examination is needed to determine how the parameter
settings affect the properties of the proposed algorithms.
Another topic for future research is the relationship be-
tween the properties of the time-varying evaluation func-

tion and the PSO parameter settings. In addition, in this
study, we evaluated the performance of the proposed meth-
ods using simulations and experiments of relatively low
order; further evaluation should involve higher-order search
space.

Topics for further development will include config-
uring a self-tuning control system based on the proposed
adaptive PSO, because accurate online estimation of the
coefficient vectors of discrete transfer functions makes
possible self-tuning adaptive control.

REFERENCES

1. Kennedy J, Eberhart RC. Particle swarm optimiza-
tion. Proc of IEEE Int Conf on Neural Network IV, p
1942–1948, 1995.

2. Ishigame A. Particle swarm optimization. Global op-
timization technique. J SICE 2008;47:459–465. (in
Japanese)

3. Carlisle A, Dozier G. Adaptive particle swarm opti-
mization to dynamic environments. Proc of Int Conf
on Artificial Intelligence, p 429–433, 2000.

4. Eberhart RC, Yuhui S. Tracking and optimizing dy-
namic systems with particle swarms. Proc of Con-
gress on Evolutionary Computation, p 94–100, 2001.

5. Carlisle A, Dozier G. Tracking changing extrema
with adaptive particle swarm optimizer. Proc of Soft
Computing, Multimedia Biomedicine, Image Proc-
essing and Financial Engineering, p 265–270, 2002.

6. Blackwell TM. Swarms in dynamic environments.
LNCS 2004;2723:1–12.

7. Blackwell T, Branke J. Multi-swarms optimization in
dynamic environments. LNCS 2004;3005:489–500.

8. Cui X, Potok TE. Distributed adaptive particle swarm
optimizer in dynamic environment. Proc of IEEE Int
Parallel and Distributed Processing Symposium, p
244–250, 2007.

9. Zhang X, Qin YDZ, Qin G, Lu J. A modified particle
swarm optimizer for tracking dynamic system.
LNCS 2005;3612:592–601.

10. Clerc M, Kennedy J. The particle swarm: Explosion,
stability, and convergence in a multidimensional
complex space. IEEE Trans EC 2002;6:58–73.

11. Mizoguchi K, Sakamoto T. Self-tuning decentralized
controller design of web tension control system. Proc
of EUROSIM Congress on Modeling and Simula-
tion, 2010.

12. Doi M, Kamiya T, Mori Y. A study on robust asymp-
totic tracking performance for generalized minimum
variance control. Trans IEE Japan 1999;119-C:1420–
1426.

Table 1. Average CPU time of calculation of each
iteration of the PSO algorithms

17

AUTHORS (from left to right)

Takeshi Nishida (member) received a bachelor’s degree from Kyushu Institute of Technology in 1998, completed the
doctoral program in 2002, and joined the faculty as a research associate, becoming an assistant professor in 2007. His research
interests are outdoor mobile robots. He holds a D.Eng. degree, and is a member of RSJ, SICE, JNNS, IEICE, and other societies.

Tetsuzo Sakamoto (senior member) completed the doctoral program at Kyushu University in 1984 and joined the faculty
as a research associate. He became a research associate at Kyushu Institute of Technology in 1985, then a lecturer and associate
professor; professor since 2002. His research interests are analysis and control of linear drives, maglev, and web tension systems.
He holds a D.Eng. degree, and is a member of SICE and other societies.

18

