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SUMMARY

Although the ABC (artificial bee colony) algorithm
is an effective tool for finding solutions to static optimiza-
tion problems, application to dynamical problems that in-
clude a time-varying element has not been assumed. A
modification of the ABC algorithm for adaptation to time-
varying functions is proposed. To adjust to the change in
the function, a procedure for reevaluating the bees at each
time is introduced. It is shown that the proposed modifica-
tion does not influence the search performance of the con-
ventional algorithm. The efficiency of the modified ABC
algorithm is demonstrated and verified through numerical
simulations. © 2013 Wiley Periodicals, Inc. Electron
Comm Jpn, 96(11): 44–53, 2013; Published online in Wiley
Online Library (wileyonlinel ibrary.com). DOI
10.1002/ecj.11479
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1. Introduction

The artificial bee colony (ABC) algorithm, a prob-
abilistic optimal search method, is an efficient method of
solving nonlinear programming problems by simulating the
swarm intelligence of bees [1]. Its performance in finding
optimal solutions robustly and quickly for nonlinear prob-
lems, nondifferentiable problems, and multimodal prob-
lems has been verified in various investigations, and in
particular there are reports [2] that it performs better in
global solution search when the objective function is of
high dimension. Improvements have also been made [3–5]
in order to improve its performance in various optimization
problems, and it has been used [6, 7] in a wide variety of
application problems. However, the ABC algorithms have
been proposed for the purpose of global solution search of
time-invariant functions, and temporal change of the cost
function due to observational noise and disturbances gen-
erated in various real implementations have not been taken

into consideration in past researches. Thus, in this paper we
propose a modification of the ABC algorithm to add adap-
tive performance with respect to time-varying functions.
This modification is shown by numerical simulations not to
affect the performance of global solution search with a
time-invariant cost function in the ABC algorithm, while
conferring adaptive performance for unimodal and multi-
modal time-varying functions. We also verify the relation-
ship between various parameters and search performance.

This paper is organized as follows. Section 2 gives
the processing procedure of the ABC algorithm. In Section
3, the modification to adapt to time-varying functions is
proposed. In Section 4, the performance of the proposed
modification is verified by numerical simulations. Section
5 gives a summary of the paper.

2. The Artificial Bee Colony Algorithm

2.1 Overview

In the ABC algorithm, global solution search prob-
lems for a cost function are modeled using three types of
artificial bees that engage in food-gathering activities,
namely, employed bees, onlooker bees, scout bees, and
food sources, as basic components. A colony is one group
of bees, and the purpose of the colony is to search for food
sources with the highest value. Half of the colony consists
of employed bees and scout bees, and the remainder of
onlooker bees. Employed bees send information about food
to onlooker bees at the same time as they fly close to
remembered food sources. Onlooker bees select good food
sources from among the sources based on information from
employed bees and search mainly in the vicinity of those
sources. When information about food sources is not up-
dated in a set period, the employed bees in question aban-
don that food source, change to scout bees, and move to a
new food source.

Based on these models, the goal of the ABC algo-
rithm is to solve the optimization problem
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for the function g: RD → R. Here x ∈ S, and the cost
function g is defined in the search space S ⊆ RD. In the
present research, S is defined in a D-dimensional hyper-
cube {x ∈ RD|l ≤ xj ≤ u, Wj} in RD. Here j ∈ J = {1, 2, . . . ,
D}, and l and u are the lower and upper bounds of xj,
respectively.

2.2 Processing procedure

The procedure for solving an optimization problem
in the ABC algorithm is shown below.†

Given Let the number of employed bees be ne and
the number of onlooker bees be no. Let the colony size be
N = ne + no. The value limit that regulates the change
from employed bee to scout bee is set.‡ The total number
of iterations Cmax is also set. l and u, which limit the range
of the search space, are set.

Step 0
(1) Let the number of iterations be c = 1. The locations

of the food sources and the employed bees are represented
by xi ∈ RD.§ Here i ∈ I = {1, 2, . . . , ne} is the number of
the employed bee. The number of successive times that the
employed bees are not altered is given by si, and si = 0 (Wi)
is set initially. In addition, the employed bees are distributed
in S by means of uniform random numbers.

(2) Calculate the fitness in the initial arrangement:

Here the sign “:=” denotes substitution. The best solution
in the initial arrangement and its function value are stored
as follows:

where ib = arg maxifi.
Step 1
This step is equivalent to search by the employed

bees.
(1) A new food source candidate vi ∈ RD(i ∈ I) is

generated:

Here vij and xij are the j-th elements in vi and xi, respectively;
m ∈ I and h ∈ J are values selected at random from I and J,
and φ ∈ [–1, 1] is a uniform random number.

(2) The fitness vi is found as follows:

(3) Based on the fitness, the information held by the
employed bees is updated as follows:

Step 2
This step is equivalent to search by the scout bees.
(1) Based on the fitness, the relative probability is

calculated:

(2) Using roulette selection based on the relative
probability, the number of an employed bee is selected from
J, and Step 1 is applied to the employed bee with that
number. When this procedure has been repeated no times,
the process moves to Step 3.

Step 3
If fib > fbest, then the solution and the function value

are updated:

where ib = arg maxi fi.
Step 4
This step is equivalent to search by the scout bees.

The employed bees that have not been updated for a speci-
fied number of times, that is, the employed bees with
number

are redistributed within S by means of uniform random
numbers, sm = 0 is set, and the fitness fm is calculated and
stored.

(1)

(2)

(3)
(4)

(5)

(7)

(8)

(9)

(6)

(10)

(13)

†The procedure implemented here is based on C language source code
made public on a web site [8] created by the person who proposed the ABC
algorithm.
‡limit = 0.1 ⋅ D ⋅ N is set [2].
§The employed bees and the food sources are specified separately in
conceptual terms, but in the processing procedure, they are completely
identical.

(11)

(12)
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Step 5
If c = Cmax, the algorithm ends. If not, c := c + 1 is

set, and the algorithm returns to Step 1.

2.3 Problems

Let us consider, for instance, a case in which the cost
function is updated from g(⋅) to g*(⋅) at a given time, as can
be seen in Fig. 1. Here the global solutions for g(⋅) and g*(⋅)
are xbest and xbest

∗ .  The figure shows that if an evaluation of
the solution using g*(⋅) is possible, then evidently g*(xbest

∗ )
< g*(xbest), and thus a search for a global solution xbest

∗  is
possible. However, when continuing a search using g(⋅),
xbest is not updated unless g(xbest

∗ ) < g(xbest) or fbest
∗  > fbest

based on the procedure in Step 3, and thus the solution may
converge to an unsuitable location.

As can be seen in this example, in the ABC algorithm,
a time-varying cost function g(⋅) is not assumed, and thus a
search adapted to environmental changes such as shifts in
the optimal solution or variations of the cost function can-
not be performed.

3. Modification of the ABC Algorithm

In order to create an ABC algorithm for global solu-
tion search of a time-varying function, part of the conven-
tional ABC algorithm must be modified as shown below.
First, the following procedure is inserted between items (2)
and (3) in Step 1.

Step 1 (2-2)
The fitness of xi is calculated as follows:

By this procedure, the changes in the fitness due to vari-
ations in the cost function can be reflected in the updating

of the employed bees in Step 1(3). When the cost function
is time-invariant, there are no changes to the value of fi, and
thus the use of this procedure does not affect the results of
search for an optimal solution of the time-invariant cost
function.

Next, Step 3 is modified as follows:
Step 3*

The search solution and its fitness are updated:

where ib = arg maxi fi.
In this procedure, the condition fib > fbest is removed

from Step 3. Thus, the peak fitness is found for each time
increment and not for the entire time period, and changes
in the fitness accompanying changes in the cost function
can be handled. Even if only this procedure is used, without
Step 1(2-2) described above, fbest and xbest may be able to
adapt to movement of the global solution: (1) a large region
of solutions is found within a set time after the start of the
search and more employed bees gather around it; (2) the
global solution moves due to changes in the cost function;
(3) for the reasons described in Section 2.3, the employed
bees located in the vicinity of the past global solution are
updated slowly because a better solution cannot be found,
and the value of si increases; (4) if the value of si rises to
some extent, then the employed bees change to scout bees
in accordance with the procedure in Step 4 and are redis-
tributed at random in the solution space; (5) all of the
employed bees are redistributed and all of the values of fi
are reinitialized; (6) the peak value fbest is selected from
among the newly calculated fi, and the search for the moved
global solution proceeds again. However, in order to restart
the search in the flow described above, it is necessary to
wait until all of the employed bees have been reinitialized
in Step 4, and thus the rate of adaptation is very slow. The
adaptation performance when only Step 3* is used is veri-
fied through simulations to be described later.

Thus, the ABC algorithm with the two procedures
described above added for the purpose of optimal solution
search that is adaptive to a time-varying cost function has
the following features compared to the conventional ABC
algorithm. (1) The fitnesses fi and fbest corresponding to the
changes in the global solution for the cost function are
reevaluated successively, and thus they do not increase
monotonically. (2) There is no new increase in the number
of design parameters. (3) The modification is simple and
produces little increase in the computational cost.

4. Numerical Simulations

The performance of the conventional ABC algorithm
and the proposed algorithm is now compared.

Fig. 1. Conceptual diagram of changes in the global
minimum in a time-varying function.  [Color figure can

be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

(14)

(15)
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4.1 Search performance for a time-invariant
function

The four typical benchmark functions used in Ref. 2
and elsewhere, namely, the Rosenbrock function, Sphere
function, Rastrigin function, and Griewank function (see
Table 1 and the Appendix) are used, and a simulation to find
a global solution by the conventional and modified algo-
rithms is performed. The colony size is set to 50, 100, and
200 and the number of dimensions in the cost function to
50, 100, and 150, and the simulation is performed on all of
the combinations of these conditions. Movement of the
function value gp (xbest) (p = 1, . . . , 4) for the sought solution
is verified. A system with the same pseudorandom numbers
is used in all of the simulations. The results are shown in
Fig. 2. In all simulations using any of the functions, the
trends of the search results for the conventional ABC algo-
rithm and the modified algorithm coincided completely.
These results confirm that the proposed modification of the
algorithm has no effect on global solution search perform-
ance for a time-invariant function and no effect on the
results.

4.2 Adaptation performance for time-varying
functions

4.2.1 Unimodal time-varying function

Let us now consider a global solution search for the
following unimodal time-varying function:

Figure 3 shows the shape of this function. This time-varying
function simulates a visual tracking problem. Specifically,
the distribution of the target features represented by a
Gaussian function moves continuously in the figure, and
the problem of tracking this movement is assumed. The
function value for a global solution is 0, and its position
shifts along a circle of radius 125 centered at (x1, x2) = (250,

Table 1. Numerical benchmark functions

Fig. 2. Evolution of the function value. The search
results of the original and modified algorithm have

completely coincided. [Color figure can be viewed in the
online issue, which is available at

wileyonlinelibrary.com.]
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250), then returns to its original position in (2π/α) steps.
Here k represents the discrete time increment, and one step
of the ABC algorithm is executed during the time in which
this value is incremented by 1. The size of the change in
each step increases with the value of α. The goal of each
algorithm in this simulation is to continue to find xbest, the
position of the global solution for g5(x1, x2, x3) that contin-
ues to move at a set rate. Here we use ne = no = 100, with
the same proportion of employed bees and onlooker bees
as in Refs. 1 and 2. The parameter controlling the changes
in the cost function is set to α = 0.01.

The three algorithms—the conventional ABC algo-
rithm, the incompletely modified algorithm with only Step
3* utilized, and the proposed modified algorithm—are used
for the time-varying cost function described above. Figures
4(a) to 4(c) show respectively the distribution of the em-
ployed bees at the instant at which c = 500, obtained by each
algorithm, and the location of the solution that is sought as
well as the trajectories of xbest toward it. Figure 4(d) shows
the time evolution of the Euclidean distance between the
global solution and xbest. First, Figs. 4(a) and 4(d) show that
updating of the sought solution xbest ceases because the
value of fbest converges immediately after the start of the
search in the conventional ABC algorithm. Next, Figs. 4(b)
and 4(d) show that when using the incompletely modified
algorithm, tracking of the solution is intermittent when the
global solution moves, and in addition the trajectory of
movement of the sought solution is distorted. This occurs
because adaptive search is performed with reinitialization
of the various parameters and creation of scout bees, but
proceeds slowly. On the other hand, Figs. 4(c) and 4(d)
show that there is little distortion of the trajectory of xbest

when using the modified algorithm, and that tracking of the
global solution when the cost function changes is per-
formed very accurately. These results confirm that the
modifications proposed in the present research allowed

Fig. 4. Results of tracking simulation of the unimodal
time-varying function g5(x1, x2, k). [Color figure can be

viewed in the online issue, which is available at
wileyonlinelibrary.com.]

Fig. 3. Time-varying function g5(x1, x2, k). [Color
figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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adaptive tracking of global solutions of a unimodal time-
varying function that varies continuously.

4.2.2 Multimodal time-varying function

Let us next consider a global solution search for the
multimodal time-varying function shown below:

Figure 5 shows a representation of this function. This
time-varying function simulates a visual tracking problem,
as the function described above did. Specifically, the distri-
bution of the multiple target features represented by a
Gaussian function repeatedly appears and disappears in the
image, and moves discontinuously. The problem is to track
them. The function value of the global solutions is assumed
to be between 0 and 0.5, and the position is switched
between (125, 375) and (375, 125) in a set period. The
objective of the algorithm in this simulation is to continu-
ously capture as xbest the position of the global solution for
g6(x1, x2, k), which moves in a set period. Furthermore, the
size of the change in the cost function in each step increases
as the value of β is set higher. The numbers of employed
bees and onlooker bees are the same as in the simulation
described above, with ne = no = 100. The parameter that
controls the changes in the cost function is set to β = 0.05.
In this simulation, movements of the global solution oc-
curred 31 times during 2000 runs.

The three algorithms—the conventional ABC algo-
rithm, the incompletely modified algorithm with only Step
3* added, and the proposed modified algorithm—are each
applied to the time-varying function described above. Fig-
ures 6(a) to 6(c) show the distribution of the employed bees
at the instant when c = 500 as obtained by each algorithm,

Fig. 5. Time-varying function g6(x1, x2, k). [Color
figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Fig. 6. Results of tracking simulation of the multimodal
time-varying function g6(x1, x2, k). [Color figure can be

viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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the position of each solution found, and the trajectory of
xbest up to that point. Figure 6(d) shows the time evolution
of the Euclidean distance between the global solution and
xbest. First, Figs. 6(a) and 6(d) show that in the conventional
algorithm, xbest moved only once, from (125, 375) to (375,
125), after which updating ceased, and it was unable to
adapt to the changes in the position of the global solution.
Thus, the solution discovered by the conventional ABC
algorithm stops at (375, 125), and the Euclidean distance to
the global solution is 250√2  when the global solution shifts
to (375, 125) or when it shifts to (125, 375). The algorithm
moves back and forth between these two values. Figures
6(b) and 6(d) show that the partially modified algorithm
was able to perform an adaptive search. This is a result of
the slow speed of the adaptive search due to the procedure
in Step 3*. On the other hand, Fig. 6(c) shows that under the
fully modified algorithm, xbest could adapt to changes in the
position of the global solution. These results confirm that
the modifications of the algorithm proposed in the present
research allowed adaptive tracking and search for a global
solution to a multimodal time-varying function that varies
discontinuously.

4.3 Colony size and adaptation performance

We next verify the effects of colony size on the search
performance of the modified algorithm. Using the time-
varying functions g5(x1, x2, k) and g6(x1, x2, k) described
above, Fig. 7 shows the results of simulations with the
colony size set to 10, 50, and 100. We used α = β = 0.01
and the value of ne was half the colony size. These results
show that when the colony size N was only 10, the moving
optimal solution could not be tracked well. It can also be
seen that the adaptation performance can be improved by
setting the colony size larger.

4.4 Movement speed and adaptation
performance of the cost function

Simulations with the multimodal time-varying func-
tion used in Section 4.2.2 and the unimodal time-varying
function used in Section 4.2.1 were performed to verify the
relationship between the speed of movement of the cost
function and the adaptation performance of the modified
algorithm. The values of α and β, which adjust the rate of
variation of the time-varying functions g5(x1, x2, k) and
g6(x1, x2, k) described above, were set to 0.01 and 0.05 and
varied by 0.1, and another simulation was performed. The
colony size was set to 200, and ne = 100 was used. Figure
8 shows the time evolution of the Euclidean distance of the
global solution and solution found in the simulation. Figure
9 also shows the trajectory of the solution found when α =
0.05, 0.1 for g5(x1, x2, k) and the arrangement of the em-
ployed bees at times k = 100 and k = 50. These results show

 Fig. 7. Time evolution of the mean squared error
versus the colony size. [Color figure can be viewed in the

online issue, which is available at
wileyonlinelibrary.com.]

  Fig. 8. Time evolution of the mean squared error
versus the speed of change of the function. [Color figure
can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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that the movement of the global solution as a result of
changes in the cost function can be adapted to at any speed,
and that as the rate of change of the cost function increases,
the Euclidean distance between the global solution and the
found solution tends to increase. Figure 9 also shows that
there is more distortion of the trajectory of the found
solution relative to the shifting trajectory of the global
solution as the rate of change in the cost function increases.

4.5 Number of dimensions and adaptation
performance

Let us next consider a global solution search of a
unimodal time-varying cost function in D dimensions, as
follows:

Here xn represents the n-th element in x ∈ RD, and the
search region is inside the hypercube extended so that –500
≤ xn ≤ 500. This function has a minimum value of 0 at xn =
sin αk (Wn). Here we set α = 0.01 and ne = no = 100 and a

minimal solution search using the proposed algorithm was
performed. As can be seen from the results in Section 4.1,
as the number of dimensions of the function in question
increased, more iterations were needed for convergence of
the solution search. Thus, as the discrete time k of the cost
function advanced by one step, the iteration steps c in the
algorithm were increased by only the same number as the
number of dimensions, that is, the search was repeated D
times. The tracking accuracy was also evaluated using the
value 1/D||x* – xbest|| found by dividing the Euclidean
distance between the found solution and the optimal solu-
tion by the number of dimensions. Figure 10(a) shows the
results obtained when the number of dimensions was varied
over D = 2, 4, 8, and 16. These results show a drop in the
search accuracy and the convergence speed of the solution
with an increase in the number of dimensions. In particular,
when the number of dimensions is D = 16, tracking of the
global solution fails. Figure 10(b) shows the search results
for a solution when the number of iterations in the proposed
algorithm was varied over 16, 5000, and 10,000 as the
discrete time k in the function advanced by one step, for a
number of dimensions D = 16. These results show that the
global solution can be found and tracked by significantly
increasing the number of times the algorithm is used as the
number of dimensions increases, and that tracking accuracy
is further improved.

(16)

Fig. 9. Trajectory of bees at (a) k = 100 and (b) k = 50
for tracking of g5(x1, x2, k). [Color figure can be viewed

in the online issue, which is available at
wileyonlinelibrary.com.]

 Fig. 10. Time evolution of the distance between xbest

and the optimal solution x*. [Color figure can be viewed
in the online issue, which is available at

wileyonlinelibrary.com.]
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5. Conclusions

This paper shows for the first time that the ABC
algorithm cannot adapt to the time evolution of a cost
function because it has an algorithmic structure in which
the fitnesses fi (Wi) of the employed bees and the fitnesses
fbest of the found solution increase monotonically. A modi-
fied method was proposed to resolve these problems, and
its features were verified by numerical simulations. The
proposed modified algorithm has a structure that actively
takes into consideration the time evolution of the cost
function by reevaluating at each time increment the values
of fi and fbest based on changes in the cost function. There
is also no need to introduce new parameters, and no signifi-
cant increase in the computational cost or in the complexity
of the algorithm structure results.

Among the many evolutionary algorithms (EAs) pro-
posed up to the present time, the features of the ABC
algorithm are superior for dealing with the finding of opti-
mal solutions in higher dimensions [2]. In the present
research, it was first shown by simulations that the proposed
algorithm has a performance similar to that of the conven-
tional ABC algorithm in search problems with a static cost
function in higher dimensions, and the superiority of the
proposed method was then confirmed. Next, using unimo-
dal and multimodal cost functions of higher dimension, it
was shown that the proposed method provides search per-
formance adapted to these issues. The practicability of its
use for time-varying functions of higher dimension was
also verified.

Most EAs cannot be used for optimal solution
searches with a dynamic cost function because they do not
assume changes in the search environment. In recent years,
improvements to various EAs to allow adaptation to a
dynamic environment have been proposed [10, 11]. How-
ever, the dynamic problems that these revised EAs assume
are of various kinds, and remain to be systematized. There-
fore, a performance comparison between the proposed
method and other EAs that assumes application to dynamic
problems is a topic for the future. The use of the present
modifications in a revised ABC algorithm, as has been
frequently proposed, together with performance verifica-
tion should be considered. Application of the present
method to a specific or real time-varying system should also
be considered.
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APPENDIX

Time-Invariant Test Function

Representations in two dimensions of the test func-
tions used in the evaluation of the global solution search
performance of the proposed method for time-invariant
functions are shown in Fig. A.1.
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