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Abstract We propose a method to improve the state
estimation accuracy of mobile robots placed near high-
rise buildings using the statistical property of the re-

flected and diffracted waves of GPS (global positioning
system) signals. First, it is assumed that a GPS signal
that contains a reflected and diffracted wave is denoted

by the sum of the true position information and noise
that follows a time-varying Gaussian distribution. On
the basis of this assumption, the time-varying bias of a

GPS signal is tracked using a Kalman filter. In addition,
a particle filter, which executes sampling and likelihood
evaluation using the estimated bias, is developed. With

the proposed method, a GPS signal that contains the
rejected noise introduced by the conventional method
can be used efficiently, and the state estimation accu-

racy of the robot in a shadow area of GPS satellite
can be improved. Furthermore, a control system for an
autonomous mobile robot incorporating the proposed

state estimation mechanism is developed, and its effec-
tiveness is evaluated via simulation.

Keywords GPS · reflected and diffracted waves ·
particle filter · vehicle control

1 Introduction

GPS (global positioning system) is widely used for the
self-localization of outdoor mobile robot. Theoretically,

if there are four or more GPS satellites that can carry
out signal reception directly using the antenna with
which the robot is equipped, position measurement is

possible[1]; the positioning quality can be improved via
reception from more visible satellites[2] . In general, the

GPS satellite that can carry out signal reception di-
rectly is called a visible satellite and other satellites are
called invisible satellites. Moreover, an area where a re-

quired number of visible satellites are not available is
called a shadow area. The measurement error of GPS
becomes significant because shadow areas occur where

many high-rise buildings exist around a robot, as shown
in Fig.1[1].

The most general method for solving this problem is
the state estimation method using dead reckoning and
map information; this method is widely used in vehi-

cle navigation systems[3]. In this technique, the direct
wave from a visible satellite and the reflected wave and
diffracted wave from an invisible satellite are classified

first[4]. When the signal from a sufficient number of
visible satellites is not acquired, the use of GPS signal
ceases, and dead reckoning based on odometry and map

information is adopted. However, since dead reckoning
has the drawback of signal accumulation errors with no
means to eliminate it, prolonged use is difficult[5].

In contrast, a GPS measurement method using a

three-dimensional map is proposed[2]. In this method,
visible and invisible GPS satellites are identified using
a city area map that has height direction information.

Furthermore, the state variables of a robot in a shadow
area are estimated using a PF (particle filter) [6,7].
However, it is necessary to compute the shadow areas

using the three-dimensional map information and the
direction of GPS satellites, and therefore, it is difficult
to apply this method to a place for which no three-

dimensional map is available.

Thus, we propose a method for improving a mobile

robot’s state estimation accuracy using the statistical
character of the reflected and diffracted waves of a GPS
signal. First, it is assumed that a GPS signal that con-

tains reflected and diffracted waves is represented by
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Fig. 1 GPS signal from an invisible satellite.

true position information and the sum of the noise that

follows a time-varying Gaussian distribution. Based on
this assumption, the time-varying bias of the Gaussian
distribution is estimated using a KF (Kalman filter),

and a PF, which executes sampling and likelihood eval-
uation using the estimated bias, are developed. Accord-
ing to this state estimation mechanism, a GPS signal

is effectively used and the state estimation accuracy of
a robot in the shadow area is improved. Furthermore,
the control system of an autonomous mobile robot in-

corporating the proposed state estimation method is
developed.

The remainder of this paper is organized as follows:
Section 2 presents the probabilistic model of a mobile

robot. In Section 3, a state estimation method using
a PF and a feedback control method is proposed. In
Section 4, the performance of the proposed methods

is verified via simulation. Finally, Section 5 provides a
summary of the paper.

2 Probabilistic Model of a Mobile Robot

2.1 Kinematic Model

Let a front-wheel-steering rear-wheel-drive-type four-
wheel mobile robot be a controlled object in this paper.

Because the driving wheel of the robot is a differential
type, the rear wheel dose not slide during rotational
movement. The robot’s state variables are defined by

the position and angle in the inertial reference system
O −XY .

xk , [xk yk θk]
T = [zTk θk]

T (1)

where k = 0, 1, 2, · · · is discrete time, zk , [xk yk]
T is

the center position of the robot based on the center of

the rear wheel axle, θk is the angle between the robot’s
direction of movement and the X axis, and l is the
length of the wheel base. Next, the motion reference

input is defined as

uk , [vk ϕk]
T , (2)

where vk denotes the direction of movement speed, which

occurs because the driving wheel and ϕk denotes the
steering angle of the front wheel, which makes a posi-
tive counterclockwise rotation. The relation of these pa-

rameters and the coordinate systems is shown in Fig.2

When it is assumed that skidding does not occur,

the discrete time state equation of the mobile robot can
be expressed as follows [3]:

xk+1 = f(xk,uk)

= xk +

 vk
ωk

{sin(θk + ωk∆)− sin θk}
− vk
ωk

{cos(θk + ωk∆)− cos θk}
ωk∆

 , (3)

where

ωk , (vk/l) tanϕk (4)

and ∆ is the sampling time.

2.2 Probabilistic Discrete State Space Model

In an actual robot system, some noise may merge with

the control input under the influence of backlash/degradation
of the drive system or an uneven road surface, etc.
Therefore, we assume that the disturbance according to

a normal distribution merges with the command input
of Eq.(2) and the control input is modeled as follows[3]:

v̂k , vk + εv, εv ∼ N (0, α1v
2
k + α2ϕ

2
k) (5)

ϕ̂k , ϕk + εϕ, εϕ ∼ N (0, α3v
2
k + α4ϕ

2
k), (6)

where αi (i = 1, 2, 3, 4) is a positive constant that de-
termines the characteristic of the noise. In a similar

manner, considering the disturbance added in the di-
rection of the robot by road surface unevenness etc.,
the transition of the angle of direction is modeled as

follows:

θ̂k+1 = θ̂k + (ω̂k + εγ)∆, εγ ∼ N (0, α5v
2
k + α6ϕ

2
k), (7)
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Fig. 2 State of a mobile robot in the world coordinate sys-
tem.
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where ω̂k , (v̂k/l) tan ϕ̂k and αj (j = 5, 6) is the posi-

tive constant that determines the characteristic of the
noise. For simplification, the noises are described as
εk , [εv εϕ εγ ]

T .

From the above relations, Eq. (3) can be described

as a probabilistic discrete state model as follows:

x̂k+1 = x̂k +


v̂k
ω̂k

{
sin(θ̂k + ω̂k∆)− sin θ̂k

}
− v̂k
ω̂k

{
cos(θ̂k + ω̂k∆)− cos θ̂k

}
(ω̂k + εγ)∆


∼ pf

(
x̂k+1

∣∣x̂k,uk) , (8)

where x̂k , [x̂k ŷk θ̂k]
T denotes the state variables

containing the probabilistic elements.

2.3 Observation Model

The mobile robot observes the self-position zGPS
k ,

[xGPS
k yGPS

k ]T at each discrete time interval using the

provided GPS antenna as follows:

zGPS
k = zk + ξk, (9)

where

ξk ∼

{
N (rk,Σs) if the robot is in a shadow area,

N (0,Σb) otherwise,

(10)

and rk denotes the time-varying bias of the Gaussian

distribution. Thus, ξk is a noise vector according to the
time-varying normal distribution from which its bias
and variance change with respect to the environment

around of the robot. Here, the covariance matrices are
Σs = diag[σ2

s , σ
2
s ] and Σb = diag[σ2

b , σ
2
b ]. In general,

because the distribution in the shadow area becomes

larger than that of a direct wave, the condition

det(Σb) < det(Σs) (11)

is fulfilled.

Next, the measurement of direction is not included

in a GPS signal, and therefore, it is calculated from the
robot’s direction as follows:

θGPS
k = tan−1

(
yGPS
k − ŷk−1

xGPS
k − x̂k−1

)
+ ωk−1∆. (12)

An observation vector consists of these observed values
as follows:

h(x̂k) = yGPS
k ,

[
xGPS
k yGPS

k θGPS
k

]T
. (13)

3 State Estimation and Control

3.1 Control System Including Particle Filter

The state variable diagram of the robot control sys-
tem developed in this research is shown in Fig.3. This
control system is developed for the robot which passes

through the specified domain by controlling only the
steering angle under the speed regularity of the robot.
In this control system, the state transition of the robot

is represented using a nonlinear model and the noise
according to the time-varying Gaussian distribution is
added to the observed signal. The PF executes three
steps, i.e., sampling, likelihood evaluation, and resam-

pling, and it functions as a state observer.

In many conventional researches that estimate state
variables of a mobile robot using a PF and a GPS sig-

nal, the sampling procedure is executed based on a kine-
matic model and likelihood evaluation is executed based
on the GPS signal. When such a procedure is employed,

the situation where a difference of prediction (i.e., the
sampling) and observation (i.e., the likelihood evalu-
ation) suddenly becomes significant, the estimation is

executed only in the domain where many particles ex-
ist, i.e., the domain where the sampling according to
the kinematic model had been executed and the sud-

den change of observation is disregarded. This situation
works effectively when the bias of a GPS signal returns
to 0 after a short time. However, the estimation error

of a kinematics model accumulates with time. More-
over, when the resampling procedure is executed in such
a situation, state estimation jumps discontinuously to

the observation domain of the GPS signal because the
particles may move suddenly, resulting in the feedback
control system becoming unstable. Therefore, when the

changes in the bias and variance of the noise in the GPS
signal are large, in order to continue driving a control
system stably, it is necessary to include the statistical

characteristics of the GPS signal in the shadow area in
a state estimator as prior knowledge. Then, in order

Fig. 3 State variable diagram with PF observer.
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to estimate the bias of the GPS signal, first, a KF is

employed. Next, the state estimation of the robot is ex-
ecuted using the bias estimated by the KF, and the PF
incorporates the statistical characteristics of the noise

of the GPS signal as prior knowledge. Then, the control
input is calculated via PF using the estimation.

3.2 Bias Estimation by Kalman Filter

The output modeled by Eq. (10) is represented as a
system including the noise following a Gaussian distri-

bution as follows:

ηk+1 = Aηk, (14)

zGPS
k = Cηk +wk, (15)

where

ηk ,


x̂k
v̂xk
ŷk
v̂yk

 , A ,


1 ∆ 0 0
0 1 0 0
0 0 1 ∆

0 0 0 1

 , C ,


1 0
0 0
0 1

0 0


wk ∼ N (0,R), R , diag

[
σ2
c σ

2
c

]
,

and v̂xk and v̂yk are velocities of the X- and Y -axis

orientations, respectively, and σ2
c is a covariance matrix

of wk. A KF is applied to this system to remove the
noise according to a Gaussian distribution as follows:

η−
k = Aηk−1 (16)

P−
k = AP k−1A

T (17)

K−
k = P−

k C
T
(
CP−

k C
T +R

)−1
(18)

ηk = η−
k +Kk

(
zGPS
k −CTη−

k

)
(19)

P k = (I −KkC)P−
k (20)

Here, in order to take into consideration the noise ac-
cording to a larger distribution, we set the variance as

σ2
c = σ2

s based on the assumption of Eq. (11).
The bias of a GPS signal is estimated using ηk,

which is estimated using the above Kalman filter as

follows:

r̂k =
√
x̂2k + ŷ2k (21)

3.3 Sampling

The PF executes state estimation using a set ofM par-

ticles with weight
{
x
(i)
k , π

(i)
k

}M
i=1

. Here, x
(i)
k is the posi-

tion of the particles in the state space and π
(i)
k ≥ 0 rep-

resents the weight of each particle. Subsequently, sam-
pling, which is one of the estimation procedures using

the PF, is described in detail.

In this research, the proposal distribution for move-

ment of particles and distribution is designed as follows:

x̃
(i)
k ∼ pq

(
x̃
(i)
k |x(i)

k−1

)
=

pf
(
x̃
(i)
k |x(i)

k−1

)
(95% of particles),

pr

(
x̃
(i)
k |x(i)

k−1

)
(5% of particles).

(22)

In this procedure, function pf (·) executes sampling for
95% of the particle set in consideration of the parti-

cle distribution, the previous input, and system noise.
This is the sampling function of the general PF and it
is used by many conventional researches [8]. However,

when movement in the shadow area continues for a long
time, the estimated error accumulates and the control
drive system becomes unstable.

In contrast, 5% of particles chosen at random are
executed using sampling according to the function pr(·)
as shown below:

x
(i)
k = f

(
xest
k−1,uk−1

)
+Rψρ(r̂k) ∼ pr

(
x
(i)
k |x(i)

k−1

)
,

(23)

where xest
k−1 is the latest posteriori estimate,

ρ(r̂k) , [ρ(r̂k) 0]T , ρ(r̂k) ∼ N
(
r̂s, σ

2
b

)
, (24)

Rψ ,
[
cosψ − sinψ

sinψ cosψ

]
, ψ ∈ rand[−π, π]. (25)

Moreover, the weight of particles sampled by pq(·) is
given as follows:

π
(i)
k =

1

M
√
2πσ2

s

exp

{
−1

2

ρ(r̂k)
2

σ2
s

}
(26)

First, the particles are sampled on the basis of the state
values estimated using the kinematic model shown in
Eq. (3) according to the Gaussian distributionN

(
r̂k, σ

2
b

)
.

Then, random rotational coordinate transformations with
radius r̂k are executed on the particles. This is a con-
trivance to improve the accuracy of state estimation,

and which enables it to use the GPS signal in the shadow
area. The assumptions expressed in Eq. (9) and (10) are
represented as pr(·) and installed into the procedure of

the PF. The outline of these sampling methods is shown
in Fig.4.

3.4 Likelihood Evaluation

The likelihood function based on the GPS signal in the

area that receives the signals from a GPS satellite di-
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Fig. 4 Overview of the proposed sampling procedure.

rectly is given as follows:

pdirect

(
yGPS
k

∣∣x(i)
k

)
=

2

3
· 1

2πσ2
b

{
exp

(
− d2x
2σ2

b

)
+ exp

(
−
d2y
2σ2

b

)}

+
1

3
· 1

2πσ2
p

exp

(
− d2θ
2σ2

p

)
, (27)

where

dx = δ
(
x
(i)
k − xGPS

k

)
, (28)

dy = δ
(
y
(i)
k − yGPS

k

)
, (29)

dθ = δ
(
θ
(i)
k − θGPS

k

)
, (30)

and δ(·) is the Dirac delta function. Furthermore, the

likelihood function based on the GPS signal in the shadow
area is given as follows:

pshadow

(
yGPS
k

∣∣x(i)
k

)
=

2

3
· 1

2πσ2
s

exp

(
−
d2xy
2σ2

s

)
+

1

3
· 1

2πσ2
p

exp

(
− d2θ
2σ2

p

)
,

(31)

where

dxy = |δ(z(i)k − zGPS
k )| − r̂k. (32)

The observation model of the PF is constructed by com-

position of these likelihood function as follows:

ph

(
yGPS
k

∣∣x(i)
k

)
=

1

2
pdirect

(
yGPS
k

∣∣x(i)
k

)
+

1

2
pshadow

(
yGPS
k

∣∣x(i)
k

)
.

(33)

The outline of this likelihood function is shown in Fig.5.

The weight π̃
(i)
k of particle x̃

(i)
k is updated using this

likelihood function as follows:

π̃
(i)
k ∝ π

(i)
k−1ph

(
yGPS
k

∣∣x(i)
k

)
, (∀i) , (34)

where all the weights are normalized so that
∑M
i=1 π̃

(i)
k =

1 after updating.

A posteriori estimation of the PF can be computed
after likelihood evaluation as follows:

xest
k =

M∑
i=1

π
(i)
k δ(x

(i)
k ) (35)

Furthermore, a control input is drawn using this poste-
riori estimation [9] as follows:

ϕkk + 1 = kϕ (ϕ
∗
k ⊖ ϕk) , (36)

vk = const., (37)

where

ϕ∗k = tan−1 y
target
i − yestk
xtargeti − xestk

, (38)

ϕ∗, ϕ ∈ [0, 2π), ⊖ denotes the smallest angular differ-

ence on a circle, and kϕ denotes the feedback gain.

3.5 Resampling

Execution of resampling is dependent on the ESS (ef-
fective sample size）[10]:

ESS =
1∑M

i=1

(
π̃
(i)
k

)2 . (39)

ESS =M when the weight of all the particles is equal
and when the variety of weights is the largest, ESS = 1.

This value is an indicator of the number of particles cur-
rently utilized effectively and it is introduced in order to
control the frequent occurrence of resampling. An ap-

propriate threshold ESSth is prepared and resampling
is executed if the obtained ESS is less than ESSth.
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Fig. 5 Likelihood function of a measurement model.
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Resampling of x
(i)
k is carried out by the probability of

π̃
(i)
k as follows:

x
(i)
k ∼


x̃
(1)
k with prob. π̃

(1)
k

...
...

x̃
(M)
k with prob. π̃

(M)
k

, (∀i) (40)

Then, the weights are normalized as follows:

π
(i)
k := 1/M, (∀i), (41)

where “:=” denotes substitution. When resampling is
not carried out, the following is executed:

x
(i)
k := x̃

(i)
k , π

(i)
k := π̃

(i)
k . (42)

From these procedures, a new set of particles{(
x
(m)
k , π

(m)
k

)}M
m=1

∼ p(xk|y1:k), (43)

is constructed. Then, the sampling is repeated with k :=
k + 1. The procedure of PF described above is shown
in Algorithm 1.

4 Simulation

The numerical simulation presented below shows that
appropriate state estimation is achieved and continued

using the proposed method even in the shadow area.

Algorithm 1 Particle Filter
1: loop
2: for i := 1 to M do
3: x̃

(i)
k ∼ pq(·|xest

k−1)
4: end for
5: for i := 1 to M do
6: π̃

(i)
k ∝ π̃

(i)
k−1 · ph

(
yGPS
k

∣∣x(i)
k

)
7: end for
8: calculation of xest

k =
∑M

i=1 π
(i)
k δ(x

(i)
k )

9: ESS = 1/
∑M

i=1

(
π
(i)
k

)2

10: for i := 1 to M do
11: if ESS < ESSth then

12: x
(i)
k ∼


x̃
(1)
k with prob. π̃

(1)
k

...
...

x̃
(M)
k with prob. π̃

(M)
k

13: π
(i)
k := 1/M

14: else
15: x

(i)
k := x̃

(i)
k

16: end if
17: end for
18: k := k + 1
19: end loop

4.1 Conditions

As shown in Fig.6, a robot on the field is controlled to
pass eight targets in order. Here, when the robot’s es-

timated position reaches the distance of 0.5 [m] from a
target, the current target is switched to the next target.
The velocity was set constant as vk = 10[m/s]. Further-

more, each parameter peculiar to the robot was defined
as follows: length of wheel base is l = 1[m], noise param-
eters of velocity α1 = α3 = α5 = 3.0, noise parameters

of steering α2 = α4 = α6 = 0.3, feedback gain kϕ = 0.8,
and the sampling period ∆ = 0.01[s].

Each parameter of the noise in a GPS signal was de-

fined as follows: σ2
b = 0.0025, σ2

p = 0.01. Furthermore,
it was assumed that the area of x < 0, i.e., half of the
field, was a shadow area and the bias and variance of
a Gaussian noise added to the GPS signal in the area

were given as follows:

rk =

{
xk if rk ≤ 5.0

5.0 otherwise,
(44)

σ2
s = 0.1. (45)

The number of particles of the PF was M = 1000 and

ESSth = 5.0.
Furthermore, for comparison with the proposed method,

the simulation was performed using the following com-

position of a general PF, i.e., the sampling follows a
system model:

x̃
(i)
k ∼ pq

(
x̃
(i)
k |x(i)

k−1

)
= pf

(
x̃
(i)
k |x(i)

k−1

)
. (46)

Moreover, only the likelihood function is used when the
direct detection of the GPS signal can be carried out,
i.e.,

ph

(
yGPS
k

∣∣x(i)
k

)
= pdirect

(
yGPS
k

∣∣x(i)
k

)
. (47)

Fig. 6 Conditions of the simulation.
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(a) time = 100[s] (b) time = 200[s]

(c) time = 330[s] (d) time = 440[s]

　 (f) time = 570[s] (g) time = 650[s]

Fig. 7 A part of the result of the state estimation using the
proposed method and particle distribution.

4.2 Results

A part of the result of the state estimation using the

proposed method and particle distribution is shown in
Fig.7. These figures show that particles are concentri-
cally distributed to a true state on the basis of the value

of the estimated bias in the shadow area. Next, the tra-
jectories of the robot depended on the proposed and
conventional methods one are shown in Fig.8(a) and

(b), respectively. These results indicate that the state
estimation in the shadow area is accurate when the pro-
posed method is used and a suitable control method is

executed. In contrast, owing to the accumulation of er-
rors in the kinematics model, the robot deviated signifi-
cantly from the target trajectory when the conventional

method was used.

Furthermore, the time evolution of the estimated
error of each state variable is shown in Fig.9. These re-
sults indicate that the state variables are estimated with

sufficient accuracy using the proposed method. In con-
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GPS measurement

(a) Proposed method
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x [m]
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GPS measurement

(b) Conventional method

Fig. 8 Trajectories of the estimation, measurement, and true
state values on the third track using (a) proposed method and
(b) conventional method.

trast, state estimation using the conventional method
became unstable with time. This is attributable to the
error of state estimation being amplified by the feed-

back control system.

5 Conclusion

We proposed a method to improve the state estimation
accuracy of mobile robots near high-rise buildings using
the statistical property of reflected wave and diffracted

wave of a GPS signal. First, it was assumed that GPS
signal that contains reflected and diffracted waves is de-
noted by the sum of the true position information and

noise that follows a time-varying Gaussian distribution.



8 Takeshi Nishida et al.

-5

-4

-3

-2

-1

 0

 1

 2

 0  500  1000  1500  2000

er
ro

r 
[m

]

time [s]

estimation error of x (proposed)
estimation error of y (proposed)

estimation error of y (conventional)
estimation error of x (conventional)

(a) Estimation error of the robot posision.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  500  1000  1500  2000

er
ro

r 
[r

ad
]

time [s]

proposed method

conventional method

(b) Estimation error of the robot direction.

Fig. 9 Time evolution of the estimated error of each state
variable.

On the basis of this assumption, a novel state observer
using the KF and PF was constructed and installed into
a feedback control system. Furthermore, the effective-

ness of the control system for the autonomous mobile
robot was shown via simulation.

For future work, the validity of the proposed method

will be verified by performing experiments in an actual
outdoor environment.
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