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1. Introduction

Position measurement
is possible by four or
more visible satellites

>
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Visible and invisible satellite
O Signal reception directory or not.

Reflected wave and diffracted wave

O Around high-rise buildings.
O Around trees.

Shadow area

A required number of visible
satellites is not available.

General methods in shadow areas

O Use of GPS signal ceases
O Using dead reckoning.

§

we propose a method for improving
a mobile robot’s state estimation accuracy

using the statistical character of
the reflected and diffracted waves.



2. Proposed hypothesis
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diffracted waves information Gaussian distribution

Measurement by GPS signal that contains
reflected and diffracted waves

Time-varying
Gaussian distribution

Tk
A . True position of
N, X
( k- S) . the mobile robot

Fig. 1 Relationship of the robot
position and noise distribution.



2. Proposed 1st idea  —construction of a state feedback control system-—
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Fig. 2 State variable diagram of the proposed control system.
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2. Proposed 1st idea  —construction of a state feedback control system-—

State estimation using a Kalman filter and a particle filter

Tracking and estimation of the time- e t"'
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- The bias of noise estimated by a KF N

The variance X of GPS measurement including

reflected and diffracted waves tends to become
large.

® The value of the bias 7, changes with time.

~

Adaptive estimation of the Gaussian noise.
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2. Proposed 2nd idea —sampling of particles—
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waves, some particles are
arranged concentrically. is estimated by KF.

Fig. 3 Overview of the
sampling procedure.
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The estimated bias 7y is
used in the likelihood

evaluation of PF.



2. Proposed 3rd idea to use the reflected and diffracted waves - likelihood —
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Fig. 4 Likelihood function of a measurement model



3. State estimation and control

Contro|

The estimate xest is calculated after the resampling procedure.
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4. Conditions of a simulation

The robot does not know
where is a shadow area.
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Fig. 5 Conditions of the simulation.
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O x < 0:shadow area.

O A robot on the field is controlled
to pass eight targets in order.

O The velocity was set constant as
v = 10 [m/s].

@ A robot moves aiming
o .
Q?%«b & 3 at a targetin order.
o
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4. Simulation
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4. Simulation

(® (@ ®
1 (=) () (=
ﬁ
[
| ) _ estimate
P @ G
(KF) o ~
= =
true
asurement
GPS measurement
(e) time =440 [s] (f) time = 650 [s]
_ o ) Fig. 6 A part of the result of
Sampling X 11~Pq (xk+1|xk uk)

Likelihood Py, ( GPS|X(1)) ;Pdlrect( GPS|x(l)) + %Pshadow( GPS|x(l))

International Symposium on Artificial Life
and Robotics 2014

the state estimation using
the proposed method.
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4. Simulation
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Fig. 7 Trajectories of the estimation, measurement, and true

state values on the third track.
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4. Simulation

Proposed method

» The state variables are estimated
with sufficient accuracy using the
proposed method.

Conventional method
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Fig. 8 Time evolution of the estimated
error of each state variable.

» The state estimation using the
conventional method became
unstable with time.

> This is attributable to the error of

state estimation being amplified
by the feedback control system.
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5. Conclution

of mobile robots near high-rise buildings using the statistical

e We proposed a method to improve the state estimation accuracy
ﬁ property of reflected wave and diffracted wave of a GPS signal.

i New capital investment is not required.

i Shadow areas are reduced.

i Because the number of available satellites is increases, the accuracy of
the GPS measurement improves.

i Combined use with dead reckoning is possible.

‘ =y ’ For future work, the validity of the proposed method will be verified
by performing experiments in an actual outdoor environment.
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