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Abstract: We focus on the filter in a method proposed recently, i.e., a method to improve the state estimation accuracy of mobile 
robots placed near high-rise buildings using the GPS (global positioning system) signals. In this method, it was assumed that a 
GPS signal that contains a reflected and diffracted wave is denoted by the sum of the true position information and noise that 
follows a time-varying Gaussian distribution. On the basis of this assumption, the time-varying bias of a GPS signal is tracked 
using a Kalman filter. In addition, a particle filter, which executes sampling and likelihood evaluation using the estimated bias, 
was developed. With the proposed method, a GPS signal that contains the rejected noise introduced by the conventional method 
can be used efficiently, and the state estimation accuracy of the robot in a shadow area of GPS satellite can be improved. In this 
research, the control system for an autonomous mobile robot incorporating the proposed state estimation mechanism is evaluated 
via different simulation condition from the previous work. 
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1 INTRODUCTION 
Theoretically, if there are four or more GPS (global 

positioning system) satellites that can carry out signal 
reception directly using an antenna, position measurement is 
possible [1]; the positioning quality can be improved via 
reception from more visible satellites [2]. In general, the GPS 
satellite that can carry out signal reception directly is called 
a visible satellite and other satellites are called invisible 
satellites. Moreover, an area where a required number of 
visible satellites are not available is called a shadow area. 
The measurement error of position becomes significant 
because shadow areas occur where many high-rise buildings 
exist around a mobile robot which equips GPS antenna [1]. 

Recently, we proposed a method to improve the state 
estimation accuracy of mobile robots placed near high-rise 
buildings using the statistical property of the reflected and 
diffracted waves of GPS signals [3]. First, it was assumed 
that a GPS signal that contains reflected and diffracted waves 
is represented by true position information and the sum of 
the noise that follows a time-varying Gaussian distribution. 
Based on this assumption, the time-varying bias of the 
Gaussian distribution is estimated using a KF (Kalman filter), 
and a PF (particle filter), which executes sampling and 
likelihood evaluation using the estimated bias, are developed. 
According to this state estimation mechanism, a GPS signal 
was effectively used and the state estimation accuracy of a 
robot in the shadow area was improved. Furthermore, the 
control system of an autonomous mobile robot incorporating 
the proposed state estimation method was developed, and its 
effectiveness was evaluated via simulation. In this paper, 
first, this method is explained, and then, is evaluated using 
different conditions from the previous work. 

2 PROBABILISTIC MODEL 

2.1 Kinematic model 
Let a front-wheel steering rear-wheel drive type four 

wheel mobile robot be a controlled object in this paper. The 
robot’s state variables are defined by the position and angle 
in the inertial reference system  

(1)
where  is discrete time,  
is the center position of the robot based on the center the rear 
wheel axle,  is the angle between the robot’s direction of 
movement and the  axis, and  is the length of the wheel 
base. Next, the motion reference input is defined as 

 where  denote the direction of movement 
speed, which occurs because the driving wheel and  
denotes the steering angle of the front wheel, which makes a 
positive counterclockwise rotation. The discrete time state 
equation of the mobile robot can be expressed as follows [4]: 

(2)

where and is the sampling time.

2.2 Probabilistic discrete state space model
In an actual robot system, some noise may merge with 

the control input under the influence of backlash/degradation 
of the drive system or an uneven road surface, etc. Therefore, 
we assume that the disturbance according to a normal 
distribution merges with the command input and the control 
input is modeled as follows: 

      (3)
     (4) 
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where  is a positive constant that 
determines the characteristic of the noise. In the similar 
manner, considering the disturbance added in the direction of 
the robot by road surface unevenness etc., the transition of 
the angle of direction is modeled as follows: 

, (5) 
where and  is the 
positive constant that determines the characteristic of the 
noise. For simplification, the noises are described as 

 denotes the state variables containing the 
probabilistic elements. 
 From the above relations, Eq. (3) can be described as a 
probabilistic discrete state model as follows: 

  (6) 

where denotes the state variables 
containing the probabilistic element. 

2.3 Observation model 
The mobile robot observes the self-position 

 at each discrete time interval using the 
provided GPS antenna as , where   

         (7) 

Thus,  is a noise vector according to the time-varying 
normal distribution from which its bias and variance change 
with respect to the environment around of the robot. Here, 
the covariance matrices are  and 

. In general, because the distribution in the 
shadow area becomes larger than that of a direct wave, the 
condition  is fulfilled. 
 Next, the measurement of direction is not included in a GPS 
signal, and therefore, it is calculated from the robot’s 
direction as follows: 

      (8) 

An observation vector consists of these observed values as 
follows: 

.    (9) 

3 STATE ESTIMATION AND CONTROL 

3.1 Control system including particle filter 
The state variable diagram of the robot control system 

developed in this research is shown in Fig. 1. This control 
system is developed for the robot which passed through the 
specified domain by controlling only the steering angle 
under the speed regularity of the robot. In this control system, 
the state transition of the robot is represented using a 
nonlinear model and the noise according to the time-varying 

Fig. 1. State variable diagram with Kalman filter and 
particle filter. 

 
Gaussian distribution is added to the observed signal. 

When the changes in the bias and variance of the noise in 
the GPS signal are large, in order to continue driving a 
control system stably, it is necessary to include the statistical 
characteristics of the GPS signal in the shadow area in a state 
estimator as prior knowledge. Then, in order to estimate the 
bias of the GPS signal, first, a KF is employed. Next, the 
state estimation of the robot is executed using the bias 
estimated by the KF, and the PF incorporates the statistical 
characteristics of the noise of the GPS signal as prior 
knowledge. Then, the control input is calculated via PF using 
the estimation.  

3.2 Bias estimation by Kalman filter 
The output is represented as a system including the noise 

following a Gaussian distribution as follows: 
                     (10) 

                 (11) 
where  

  (12) 

           (13) 
and  and  are velocities of the - and -axis 
orientations, respectively, and  is a covariance matrix of 

. A KF is applied to this system to remove the noise 
according to a Gaussian distribution. Here, in order to take 
into consideration the noise according to a larger distribution, 
we set the variance as  based on the above 
assumption. The bias of a GPS signal the above KF as 

 .                  (14) 

3.3 Sampling 
The PF executes state estimation using a set of  

particles with weight . Here,  the 
position of the particles in the state space and  
represents the weight of each particle. Subsequently, 
sampling, which is one of the estimation procedures using 
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the PF, is described in detail. 
In this research, the proposal distribution for movement 

of particles and distribution is designed as follows:  

     (15) 

In this procedure, function  executes sampling for 
95% of the particle set in consideration of the particle 
distribution, the previous input, and system noise. In constant, 
5% of particles chosen at random are executed using 
sampling according to the function  as shown below: 

,   (16) 
where  is the latest posteriori estimate, 

, ,  (17) 

, , (18) 

Moreover, the weight of particles sampled by  is given 
as follows: 

.         (19) 

First, the particles are sampled on the basis of the state values 
estimated using the kinematic model according to the 
Gaussian distribution . Then, random rotational 
coordinate transformations with radius  are executed on 
the particles. This is a contrivance to improve the accuracy 
of state estimation, and which enables it to use the GPS 
signal in the shadow area. The outline of these sampling 
methods is shown in Fig. 2. 

3.4 Likelihood evaluation 
The likelihood function based on the GPS signal in the 

area that receives the signals from a GPS satellite directly is 
given as follow: 

 

 (20) 

where , , 
, and  is the Dirac delta function. 

Furthermore, the likelihood function based on the GPS signal 
in the shadow area is given as follows: 

   (21) 

where . The observation model 
of the PF is constructed by composition of these likelihood 
functions as follows: 

    (22) 
The weight of particle is updated using this likelihood 
function as follows: 

         (23) 
where a l l t he weight s are no r ma lized so  that  

 after updating. 
 A posteriori estimation of the PF can be computed after  

Fig. 2. Likelihood function of a measurement model. 
 

likelihood evaluation as follow: 
            (24) 

Furthermore, a control input is drawn using this posteriori 
estimation as , where , 

, 
,  denotes the smallest angular difference on a 

circle, and  denotes the feedback gain. 

3.5 Resampling 
 Execution of resampling is dependent on the ESS 

(effective sample size):  
.              (25) 

 when the weight of all the particles is equal and 
when the variety of  weights is the largest, . This 
value is an indicator of the numger of particles currently 
utilized effectively and it is introduced in order to control the 
frequent  is prepared and resampling is executed if the 
obtained  is less than . Resampling of  is 
carrried out by the probability of  as follows: 

     (26) 

Then the weights are normalized as  ,
 where  denotes substitution. When resampling is 
not carried out, the following is executed: 

,              (27) 
From these procedures, a new set of particles  
is constructed. Then, the sampling is repreated with 

. 

4 SIMULATION 

4.1 Conditions 
A robot on the field is controlled to pass eight targets in 

order. Here, when the robot’s estimated position reaches the 
distance of 0.5 [m] from a target, the current target is 
switched to the next target. The velocity was set constant as 

 [m/s]. Furthermore, each parameter peculiar to the 
robot was defined as follows: length of wheel base is  
[m], noise parameters of velocity ,  
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(a) Proposed method 

 
(b) Conventional method 

Fig. 3  Trajectories of the estimation, measurement, 
and true state values on the third track using (a) 
proposed method and (b) conventional method. 

 
noise parameters of steering , feedback 
gain , and the sampling period  [s]. 

Each parameter of the noise in a GPS signal was defined 
as follows: , . Furthermore, it was 
assumed that the area of , i.e., half of the field, was a 
shadow area and the bias and variance of a Gaussian noise 
added to the GPS signal in the area were given as follow: 

 [m] (const.),  . The number of particles of 
the PF was  and . Furthermore, for 
comparison with the proposed method, the simulation was 
performed using the following composition of a general PF, 
i.e., the sampling follows a system mode: 

.     (28) 
Moreover, only the likelihood function is used when the 
direct detection of the GPS signal can be carried out, i.e.,  

.      (29) 

The trajectories of the robot depended on the conventional 
methods and proposed methods one are shown in Fig. 3(a) 
and (b), respectively. These results indicate that the state 
estimation in the shadow area is accurate when the proposed 
method is used and a suitable control is executed. In contrast, 
owing to the accumulation of errors in the kinematics mode, 
the robot deviated significantly from the target trajectory 
when the conventional method was used. This is attributable 
to the error of state estimation being amplified by the 
feedback control. 

5 CONCLUSION 

We proposed a method to improve the state estimation 
accuracy of mobile robots near the high-rise buildings using 
the statistical property of reflected and diffracted waves of a 
GPS signal. A novel state observer using the KF and PF was 
constructed and installed into a feedback control system. 
Furthermore, the effectiveness of the control system for the 
autonomous mobile robot was shown via simulation. 
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