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Abstract: We propose a simple, fast 3D (three-dimensional) matching method that determines the best rotation matrix between 

non-corresponding PCs (point clouds) with no iterations. An estimated rotation matrix can be derived by the following two 

steps. 1) The SVD (singular value decomposition) is applied to a measured data matrix, and a database matrix is constructed 

from the PC datasets. 2) The inner product of each left singular vectors is used to produce the estimated rotation. Through 

experimentation, we demonstrate that the proposed method executes 3D PC matching with less than 4% of the computational 

time of the ICP (iterative closest point) algorithm with nearly identical accuracy. 
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1 INTRODUCTION 

Recently, LRFs (laser range finders) and RGB-D (red, 

green, blue depth) cameras have been widely used for 3D 

(three-dimensional) object recognition. Furthermore, 3D 

object recognition and registration using PC (point cloud) 

data captured by these sensors are important in multiple 

industries. The ICP (iterative closest point) algorithm is a 

common approach used for the 3D matching of measured 

partial datasets between a target object and a PC’s 

database [2, 3]. In the ICP algorithm, the correspondence 

of 3D points and a rigid body coordinate transformation, 

which results in the best rotation matrix, is iteratively 

searched for between the two 3D PC sets by repeating the 

closest point search when the correspondence is unknown.  

Recently, we proposed a 3D matching method that 

determines the best rotation matrix between two non-

corresponding PCs without iteration [4]. This method is 

simple and fast. An estimated rotation matrix can be 

derived using two steps of the SVD (singular value 

decomposition). However, this method has restrictions in 

its application to actual PC conditions. Therefore, we 

constructed a new PC matching method by combining the 

ICP algorithm and our 3D matching method in order to 

reduce the computational cost and overcome these 

restrictions. Through several simple experiments using 

actual PCs, we demonstrate that the proposed method 

executes 3D PC matching using less than 4% of the 

computational time of the ICP algorithm and with almost 

the same accuracy. 

 

2 ESTIMATE OF TRANSFORMATION 

2.1 Three-dimensional pose estimation 

The rigid body coordinate transformation of two 3D PC 

sets is a relation, which can be is expressed as follows [5]. 

Given two 3D point sets, 𝐴 =  {𝒂𝑖 ∈ ℝ3|𝑖 = 1, ⋯ , 𝑁}  
and 𝐵 =  {𝒃𝑖 ∈ ℝ3|𝑖 = 1, ⋯ , 𝑁}  and an element 𝒂𝑖 =

[𝑎𝑖𝑥    𝑎𝑖𝑦    𝑎𝑖𝑧]
𝑇
, which is a point in Euclidean space, then 

a corresponding pair of two points 𝒂𝑖 and 𝒃𝑖 is related with 

translation 𝒕 ∈ ℝ3 and rotation 𝑹 ∈ ℝ3×3 by: 

 𝒃𝑖 = 𝑹𝒂𝑖 + 𝒕. (1) 

The estimation problem of (𝑹, 𝒕) results in the following 

minimization problem: 

 min
(𝑹,𝒕)∈𝑆𝐸(3)

‖𝑩 − (𝑹𝑨 + 𝒕𝟏)𝑇‖𝐹,  (2) 

where 𝒂𝑖  and 𝒃𝑖  are elements in the matrices 𝑨  and 𝑩  , 

respectively. The set 𝑆𝐸(3) is a Euclidean exercise group 

in 3D space, 𝟏 = [1, 1, ⋯ ,1]𝑻 , 𝒕 ∈ ℝ𝑁 , and ‖∙‖𝐹  is a 

Frobenius norm. In general, because PC data include size 

information, a parameter for size does not need to be 

included in the cost function. Translation component 𝒕 can 

be calculated from the center of gravity of the PCs. 

Therefore, eq. (2) can be rewritten so that it depends only 

on 𝑹: 

 min
𝑹∈𝑆𝑂(3)

‖𝑩′ − 𝑹𝑨′‖𝐹 , (3) 

in which 𝑹 ∈ 𝑆𝑂(3) is a 3D rotation group, and 𝑨′ and 𝑩′ 
are defined to be: 

 𝑨′ = [𝒂1
′ , ⋯ , 𝒂𝑁

′ ] = 𝑨{𝑰𝑁 − (1 𝑁⁄ )𝟏𝟏𝑇}, (4) 

 𝑩′ = [𝒃1
′ , ⋯ , 𝒃𝑁

′ ] = 𝑩{𝑰𝑁 − (1 𝑁⁄ )𝟏𝟏𝑇}. (5) 

Here, 𝑰𝑁 ∈ ℝ𝑁×𝑁 is the unit matrix, and 𝒂′𝑖 and 𝒃′𝑖  are the 

3D points that result when the translation components are 

subtracted from 𝒂𝑖 and 𝒃𝑖 , respectively. In order to solve 

this estimation problem of a rigid body coordinate 

transformation, several methods have been proposed in the 

research field called Procrustes analysis and are widely 

used [6]. One solution to this problem uses SVD [7, 8]: 

 𝑩′𝑨′𝑻
=

SVD
𝑼𝚺𝑽𝑻 ∈ ℝ3×3, (6) 

in which 𝑼 ∈ ℝ3×3 is a left singular vectors, 𝚺 ∈ ℝ3×3 is a 

diagonal matrix containing singular values, and 𝑽 ∈ ℝ3×3 

is a right singular vector matrix. Thus, 

 𝑺 = diag(𝟏  𝟏  |𝑽𝑼𝑻|) ∈ ℝ3×3. (7) 

Using eq. (6), we obtain 𝑹 from eq. (3) as follows: 

 𝑹 = 𝑽𝑺𝑼𝑻, (8) 

where 𝑺 is a matrix used to avoid mirror image matching 

when measurement data include substantial measurement 

noise.  

Because each element of 𝑨′ and 𝑩′  in eq. (6) needs to 

precisely correspond  [4], the method is combined with the 
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ICP algorithm in order to determine a correspondence 

between each element in the 3D PCs.  

2.2 Rigid body coordinate transformation estimation 

Procrustes analysis provides another solution based on a 

different usage of the SVD [9, 10]. In previous research 

[4], it was shown that the proposed estimation method of 

rigid body coordinate transformation does not require an 

iterative procedure and that the algorithm is very simple 

and fast. The concrete procedure for this consists of two 

steps. The first step can be written as 

 𝑨′ =
SVD

𝑼𝑨′𝚺𝑨′𝑽𝑨′
𝑻  (9) 

 𝑩′ =
SVD

𝑼𝑩′𝚺𝑩′𝑽𝑩′
𝑻 . (10) 

In the next step, the left singular vectors 𝑼𝑨′ ∈ ℝ3×3 and 

𝑼𝑩′ ∈ ℝ3×3 are used to determine the rotation matrix 𝑹 as 

follows: 

 𝑹 = 𝑼𝑩′𝑼𝑨′
𝑻, (11) 

where 𝑨′ ∈ ℝ3×𝑁  is a database pattern matrix and 𝑩′ ∈
ℝ3×𝑀 is a measurement pattern matrix.  

 

2.3 Features and constraints 

The elements of these matrices do not need to be in 

corresponding order. In addition, the number of the 

elements that comprise these matrices may differ, i.e. the 

condition 𝑁 ≠ 𝑀  is acceptable. Moreover, all the SVD 

results of the database patterns, 𝑼𝑨′, can be calculated in 

advance. Therefore, this method can be quickly executed 

using an online procedure. However, it also has the 

following constraints. 

1. Two PCs should express the same 3D region. 

2. Elements of the 3D PCs should be uniformly 

distributed. 

This method is applicable to a set of PCs that express 

different regions. However, when the occupying space 

volumes of two PCs are unequal, the matching cost 

function cannot be minimized. Moreover, when a PC is 

missing some elements because of a lack of measurement, 

for example, the pattern matching decision cannot be 

appropriately performed. Thus, a pre-processing procedure 

must be employed to uniformly extract the 3D PC in order 

to apply this method. Therefore, we combine this method 

and the ICP algorithm.  

2.4 Types and accuracy of SVD algorithms 

In this research, we have adopted a program provided by 

the GSL (GNU science library) [11] as an actual SVD 

algorithm. The appropriate choice of an SVD algorithm or 

program is important; some SVD algorithms possess 

different conditions or calculation accuracy. For example, 

the Golub-Reinsch algorithm, the modified Golub-Reinsch 

algorithm, and the one-side Jacobi orthogonalization 

method have been implemented in the GSL. We used the 

modified Golub-Reinsch algorithm as an SVD algorithm 

in our experiment. This algorithm is suitable for the 

execution of our method because its computational time is 

substantially faster when the number of columns differs 

from the number of rows in the target matrix, i.e. when 

𝑁, 𝑀 ≫ 3.  

3 PC MATCHING ALGORITHM USING SVD 

3.1 Summary of ICP algorithm 

 The ICP algorithm is a method that matches partial 3D 

shape data to a larger model’s shape when the points’ 

correspondence is unknown [3]. The following processes 

(Tab. 1) are repeated in order to check the matching ratio 

between the test data 𝐶 = {𝒄𝑖}𝑖=1
𝑁 ∈ ℝ3  and a given 

database  𝐷 = {𝒅𝑖}𝑖=1
𝑀 ∈ ℝ3 . The point correspondences 

are not given in the initial condition. In practice, the ICP 

algorithm needs several other procedures, such as the 𝒅𝑖  

sampling method, the closest point searching method, and 

the pre-processing method for non-correspondence 

datasets. It is important to note that the procedure [ICP 

step 1] and [ICP step 2] used to estimate 𝑹 can be replaced 

with the previously mentioned method, that of eq. (9) to 

eq. (11). In the ICP algorithm, the value of 𝜖  converges 

with innumerable repetitions.  

 

Table 1. ICP algorithm 

 

 

[ICP given]  

Construct a test pattern 𝑪 = [𝒄1   ⋯  𝒄𝑁]  
from the measurements. 

 

[ICP step 1] 

Construct 𝑫 = [𝒅1   ⋯  𝒅𝑁] by extracting the points 𝒅𝑖   

closest to 𝒄𝑖  (∀𝑖) from 𝐷. 

 

[ICP step 2]  

Estimate rotation matrix 𝑹 from eq. (3) to eq. (8). 

 

[ICP step 3]  

Construct rotated pattern 𝐶̅ = 𝑹𝑇𝑪 ≜ [𝒄̅1   ⋯  𝒄̅𝑖   ⋯  𝒄̅𝑁], 
and arrange the points in corresponding order. Namely,  

construct  𝑫̅ = [𝒅̅1   ⋯  𝒅̅𝑁] using the extracted closest  

points 𝒅̅𝑖  obtained by searching 𝒄̅𝑖  (∀𝑖). 

 

[ICP step 4]  

If 𝜖 = ‖𝑫̅ − 𝑪̅‖𝐹 is greater than the threshold value, return

to [ICP step 1]. If 𝜖 is less than threshold value, exit the  

process. 

 

 

3.2 Construction of database 

In this section, the database construction using the 

proposed method is described. First, database patterns are 

produced as follows. The 𝑗  th database pattern matrix 

𝑴(𝑗) = [𝒎1
(𝑗)

  ⋯  𝒎𝐿
(𝑗)

]  is constructed by arranging the 

target object’s 3D points that are measured from a single 

viewpoint. Here, 𝑗 = 1, ⋯ , 𝐽  is the database pattern’s 

index, and the number of elements 𝐿  must exceed 𝑁 . 

Moreover, their centers of gravity are then matched to the 
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origin. Next, the SVD is applied to the database pattern 

matrices: 

 𝑴(𝑗) =
SVD

𝑼𝑴(𝑗)𝚺𝑴(𝑗)𝑽
𝑴(𝑗)
𝑻 , (12) 

and 𝑼𝑴(𝑗)  is stored. 

 

3.3 Proposed PC matching algorithm 

We propose the PC matching algorithm shown in Tab. 2. 

 

Table 2. Proposed PC matching algorithm 

 

[Prop. given]  

Construct the measurement pattern matrix 

𝑪 = [𝒄1   ⋯  𝒄𝑁] 
from the measurement of the PC. At this time, the center 

of gravity is matched to the origin by translation. 

 

[Prop. step 1]  

Apply the SVD to the measurement pattern matrix, 

𝑪 =
SVD

𝑼𝑪𝚺𝑪𝑽𝑪
𝑇, 

and estimate the rotation matrix as follows: 

𝑹(𝑗) = 𝑼𝑪𝑼
𝑴(𝑗)
𝑇 .  

 

[Prop. step 2]  
Construct a rotated pattern, 

𝑪̅(𝑗) = 𝑹(𝑗)𝑇𝑪 ≜ [𝒄̅1   ⋯  𝒄̅𝑖   ⋯ 𝒄̅𝑁], 
  and construct 𝑴̅(𝑗) = [𝑚̅1

(𝑗)
  ⋯  𝑚̅𝑁

(𝑗)
] in order according 

to its closest point 𝒄̅𝑖 that was extracted from 𝑴(𝑗). 

 

[Prop. step 3]  
Calculate the matching error as follows: 
 𝜖(𝑗) = ‖𝑴̅(𝑗) − 𝑪̅(𝑗)‖

𝐹
  (∀𝑗). (13) 

The index of the minimum 𝜖(𝑗) is defined to be the  

matching pattern number. 

 

 

These procedures, [ICP step 1] and [ICP step 2], 

correspond to [Prop. step 1] for the estimation of the best 

rotation matrix, but the latter does not require multiple 

iterations in order to converge to the evaluation value. The 

procedures [Prop. step 1] and [Prop. step 2] can be 

quickly executed, and the matching procedures for all of 

the database patterns can be simultaneously performed. 

Moreover, [ICP step 1] corresponds to [Prop. step 3], but 

the former requires that calculation ingenuity be applied to 

the point correspondence search if the distance between 

the PCs is large in initial iteration. However, [Prop. step 

3] immediately estimates the best rotation matrix because 

it is executed on the simple closest point search. In 

addition, by providing a threshold of 𝜖(𝑗) , the proposed 

method can determine a reject pattern.  

 

4 EXPERIMENTS 

4.1 Conditions 

The target objects’ images and the database PCs 

constructed using 3D measurement are shown in Fig. 1.  

(a) Image of type A  (b) PC of type A 

(c) Image of type B  (d) PC of type B 

(e) Image of type C (f) PC of type C 

Fig. 1 Images and PCs of plastic bottles for databases 

 

These patterns are constructed using the measurement of 

three types of plastic bottles and an Xtion pro live sensor. 

The computer is configured as follows: the CPU is an Intel 

core i7 (3.4GHz), with 8 GB of RAM and an Ubuntu 

12.04 (32bit) operating system. 

A measurement pattern constructed to be a recognition 

target is shown in Fig. 2. This pattern was constructed by 

rotating the type A plastic bottle and measuring the 

distances that were farther than those of the database 

patterns. It was then rotated 90 degrees. The numbers of 

points used for these patterns are shown in Table 3. It is 

clear that the number used for the test pattern is 

significantly less than those used for the database patterns. 

 

4.2 Results 

Given these conditions, the pattern matching 

experiments are executed using both the proposed method 

and the ICP algorithm in order to create a comparison. The 

results are shown in Figs. 3 and 4. In both cases, the 

number of points for the test pattern was 𝑛𝑠 = 2613. In  
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Fig. 2 PC of test pattern (type A, 90-degree rotation) 

 

Table 3 Number of points in each dataset 

 

 

these experiments, an appropriate estimation of the best 

rotation matrix was not determined using the ICP 

algorithm because the angle of the best rotation matrix, 

which associates the database and test patterns, was too 

large. Therefore, we applied the ICP algorithm to the test 

pattern after a 90-degree rotation around the y-axis. The 

results shown in Figs. 3 and 4 were obtained under these 

conditions. The ICP algorithm was repeated until the 

evaluation value converged, and the calculation time was 

measured for the value 𝜖(𝒋)/3𝑛 to fall below 0.700 or for 

the value to converge. These results show that the 

matching errors produced by the proposed method and the 

ICP algorithm were minimal in the case of type A’s 

pattern, meaning the pattern matching had been correctly 

executed. Moreover, despite the fact that the ICP 

algorithm was applied after adjusting the initial position, 

the calculation times achieved by the proposed method 

were less than 4% of those attained by the ICP algorithm. 

 

5 CONCLUSION 

We proposed a method for improving the PC matching 

algorithm using an estimation method based on SVD [4]. 

Upon comparison of our method with the ICP algorithm, it 

was shown that our method’s calculation time was less 

than 4% of the proposed method’s time because the 

proposed method requires the extraction of target objects 

from the environmental 3D PC in practical applications. 

Moreover, our method could prove even faster if it is 

applied after PC feature extraction. 
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Plastic bottle A (database) 10,189 

Plastic bottle B (database) 9,476 

Plastic bottle C (database) 9,896 
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