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Abstract—We propose a relative position estimation method of 

multiple moving objects using a monocular camera. In this 

method, moving objects are extracted and tracked on captured 

images, and the relative position and transitions are estimated by 

a probabilistic visual estimation method SVO (fast semi-direct 

monocular visual odometry). SVO executes precise and robust 

visual odometry and has been proposed for use in a micro aerial 

vehicle (MAV) that has a single downward-looking camera. In 

our proposed method, we execute multiple SVOs in parallel, not 

only for executing visual odometry, but also for the relative 

distance estimation between multiple moving objects. The 

estimation results of each SVO are integrated, and the relative 

positions of targets are robustly estimated in real time. The 

effectiveness of the proposed method is shown through several 

experimental simulations. 

I. INTRODUCTION 

Recently, many research studies on mobile robots and 
drones have been performed. In many of these studies, size and 
weight limitations make the use of multiple sensors and a large 
computer system unfeasible. To deal with these restrictions, 
various methods on high-speed three-dimensional map 
generating and localization by a small monocular camera have 
been proposed.  

In a traditional localization method, the features of a scene 
are extracted and compared with known map data in each 
captured image; then, the estimated camera position and map 
data are both updated. However, the computational cost of 
updating of the complete map data is too high. Therefore, the 
parallel tracking and mapping (PTAM) [1] method updates the 
map only when the key frame is obtained. The map updating 
and the tracking of feature points are processed in different 
threads, thus increasing the speed of the position estimation 
calculation. Moreover, the fast semi-direct monocular visual 
odometry (SVO) [2] executes the tracking of feature points, 
map updating, and feature point extraction when the key frame 
is obtained, achieving further high speed processing. In this 
method, the relative pose estimation of the camera and feature 
points is achieved together with precision by Bayesian 
estimation. However, SVO is designed for processing of the 
image obtained from a monocular camera mounted beneath the 
drone and has a restriction that no object is moving relative to 
the drone in the image. Thus, when the image includes some 
relative moving objects, the self-localization by SVO cannot 
be executed properly. Therefore, in this research, we propose a 
method for overcoming this limitation of SVO. In the proposed 
method, multiple SVOs matching the number of moving 
objects are executed in parallel. Each SVO compiles a relative 
map against the moving objects independently. By integrating 
these together, it is then possible to obtain the relative 
movement of the objects and the structure of the whole map. 
The flow chart of the proposed method is shown in Fig. 1.  
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II. SVO 

The SVO executes the motion estimation thread and 

mapping thread parallel in real time. The flow chart is shown 

in Fig. 2.  

A. Motion Estimation Thread 

In the motion estimation thread, the correspondence 

between the feature points in time-series images are 

extracted, and the pose change of camera is estimated 

from them. In the SVO, because the feature extraction is 

executed only at a key frame, the resulting feature points 

in the key frame are tracked in other frames. For 

robustness in the tracking and searching of 

correspondence, minimization of the photometric error 

using the patch and re-projection error are executed.  
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Fig. 1. Flowchart of the proposed method. 

 

Fig. 2. Flowchart of SVO. 



 

 

 

B. Mapping Thread 

In the mapping thread, the 3D position of features in the 

image is estimated by a probabilistic depth filter. The 

filter estimates the depths of features using a 

probabilistic distribution function (PDF). Depths of the 

feature points are calculated using sequentially obtained 

coordinate transformation, and the PDFs are updated．
After the PDF updates are converged, the maximum a 

posteriori of the PDF is adopted as a depth of the feature 

point and integrated into the environmental map. 

III. MOVING OBJECT DETECTION 

For this research, we construct two types of SVO. One 
executes visual odometry by extracting the ground information, 
the other estimate the relative position of moving objects by 
extracting them. The former can be achieved with the use of a 
normal SVO; however, the execution of the latter requires the 
extraction of moving objects. In the case of the fixed camera, 
moving objects can be extracted by background subtraction or 
the interframe difference. In the case of the moving camera, 
estimating the object movement and background region at the 
same time is necessary. In the proposed method, the moving 
objects are detected using the interframe difference method 
after executing the alignment of the background between the 
time sequence images by using a projective transformation. 

A. Alignment of background 

Feature points in the sequential images are tracked by the 
Lucas-Kanade method [3], and the projection matrix denotes 
the amount of camera motion by using the obtained 
correspondence of the feature points. By using this matrix, the 
backgrounds in the sequential images are aligned.  

B. Inter-frame Difference 

Detected moving objects are tracked by the mean shift 
method. This is one of the solutions of the mode search 
problem as it tracks targets by maximizing the 
Bhattacharyya coefficient. The amount of motion is 
estimated by this procedure. 

IV. SEPARATE IMAGE 

 The background image is created by removing the region 

of the moving objects, and is input to the localization SVO. 

The moving object images are created by removing the 

background, and they are input to the SVOs, which estimate 

the moving objects. 

V. RESULTS 

We conducted several simulations for the evaluation of the 
proposed method. First, we developed a simulation 
environment by using Gazebo [4] and ROS (robot operating 

system) [5]. The overview of the simulation is shown in Fig. 3．
In this simulation, there is a drone equipped with a monocular 
camera on the bottom, and a Kobuki robot moving around the 
floor. The fluctuation of the equipment operation and the 
measurement noise are also reproduced. Captured image by the 
virtual camera on the drone is processed by the proposed SVO 
system, and the localization, position estimation of the Kobuki 
robot, and environmental map generation are executed. In this 

experiment, the drone was hovering at a fixed position in space, 
and the Kobuki traveled in a circle. The time evolution of the 
estimation error is shown in Fig. 4. From the results, the 
maximum tracking error was found to be 0.06 [m] on the 𝑧 axis, 
showing the accuracy of the proposed method to be sufficiently 
high. Furthermore, map generation using the background 
image was executed and was considered highly accurate. 

VI. CONCLUSION 

In this paper, we proposed an expansion method of SVO for 

high-speed drone use. By using multiple SVOs in parallel, the 

positions of multiple moving objects in an image can be 

measured by a monocular camera. In addition, by the final 

integration of the SVO outputs, the exact map and changes in 

the environment can be measured. 
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Fig. 3. Physical simulation of a drone equipped SVO in Gazebo.  

 
Fig. 4. Time evolution of the tracking error of the Kobuki robot. 


