
  

 

Abstract— LIDAR (light detection and ranging) sensors are 

important for autonomous driving because it is possible to obtain 

wide-ranging distance information via three-dimensional laser 

irradiation. However, because this sensor irradiates lasers 

radially, the quantity of measurement data obtained from distant 

objects decreases. Therefore, when an object recognition 

algorithm is applied to the data, the recognition ratio of distant 

objects declines. The performance of present LIDAR is not 

adequate to obtain the data for autonomous driving for car 

speeds of 60 (km/h) or greater. Thus, we propose two methods of 

superimposing time-series LIDAR data. In the first method, the 

posture transition of LIDAR during a sampling time is estimated 

and used for superimposition of several measuring frames. In the 

second method, target object extraction results in each 

measurement are used to merge several frames. We describe 

these methods in detail and show several experimental results. 

I. INTRODUCTION 

The next-generation driving support system requires two 
functions: a function for predicting the risk associated with 
pedestrians or cyclists and an environment recognition 
function for the avoidance behavior. LIDAR (light detection 
and ranging) is widely used in environment recognition for 
autonomous driving. This sensor is capable of measuring the 
object distance and the reflection intensity of the measurement 
object. It is also capable of scanning a greater distance and 
wider range than other sensors. In addition, the performance 
degradation on the natural environment change is small. 
Several studies have been conducted on person recognition 
using LIDAR point cloud data [1, 2]. However, the problem of 
the reduction in recognition precision with increase in distance 
to the measured object persists. 

In this research, we present a method that superimposes 
time-series LIDAR data, and we tried to improve the 
performance of various recognition algorithms using this 
method. The following describes the results of these validation 
experiments. 

II. LIDAR 

In this research, a LIDAR sensor, HDL-64E (Velodyne), 
was used. The overview is shown in Fig. 2. The HDL-64E can 
measure all distances in the horizontal plane. The vertical 
measurement region is from +2 (°) to -24.8 (°), and it is capable 
of laser irradiation rates of 1.33 million per second. Then, point 
sets of three-dimensional (3D) Euclidean space (point clouds) 
are acquired by the measurement of the LIDAR. Since this 
sensor irradiates lasers radially, as distance increases, the 
number of measurement data points obtained at a distant object 
decreases. Therefore when an object recognition algorithm is 
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applied to the data, the recognition ratio of distant objects 
declines. 

III. SUPERIMPOSING 

When the distance to the target is far, the density of laser 
spots becomes sparse (Fig. 3). For example, in the case of the 
person who stands at distance of 50 (m) from the LIDAR, the 
number of irradiated laser spots is only ten, as shown in Fig. 4. 
For pedestrian recognition by LIDAR measurement, more than 
30 laser spots are required. This number is derived from the 
results of the recognition experiment and based on a pedestrian 
recognition method from research literature [1, 2].  

In this paper, in order to increase the measurement and the 
recognition performance over long distance (about 50 (m)), we 
propose a superimposition method of multiple time-sequence 
measurement data. Strategies of the superimposition method 
can be divided broadly into two categories. The first one is a 
method of superimposing all collected data in multiple frames, 
while the second is a superimposing cut-out of only the 
measurement point cloud of distant targets. The former has 
high accuracy and high computational cost owing to the large 
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Fig. 1. Example of LIDAR measurment of a road environment.  

 

Fig. 2. Overview of Velodyne HDL-64E and a vehicle equipped with the 

LIDAR. 



  

number of data points being processed. On the other hand, the 
latter executes the convolution of only target objects, its 
accuracy is lower than the former, and it is possible to lower 
the number of calculations. This method can even account for 
pedestrians jumping out in front of a vehicle and other rapid 
changes in traffic conditions. Furthermore, the first method 
results in finding a rigid-coordinate transformation of the 
corresponding unknown 3D point cloud, while the second 
method has a problem detecting and tracking target objects. In 
this research, we constructed and evaluated an algorithm using 
the first method. In this method, target recognition and 
extraction is executed in each frame, and estimated movement 
is executed by the extracted results collated between the current 
and latest frames. Moreover, the superimposing of multiple 
frames is executed based on the estimated amount of 
movement and the results are forwarded to the target 
recognition function. 

A. Estimation of the amount of the movement 

The measurement of LIDAR fluctuates in each frame 
because the positional relationship between the LIDAR 
mounted on the car and environment continuously changes. 
Thus, an optimization matching algorithm for measured point 
clouds is required. In this research, we tried to estimate the 
amount of movement by using the iterative closest point (ICP) 
algorithm [3] and the normal distribution transform (NDT) 
algorithm [4]. The ICP algorithm is an optimization method of 
the rotation and translation transformation between the point 
clouds by an iterative procedure for reducing a cost function. 
The NDT algorithm executes probabilistic matching for 
measurement point clouds in multiple frames, including the 
rotation and translation matrix, which means that the amount 
of movement is estimated. 

Examples of application results of these algorithms are 

shown in Fig. 6. In these experiments, we executed an offline 

matching procedure by using the frames Fig. 6 (a) and (b) 

measured by the HDL-64E. The car speed was 20 (km/h) as 

measured by speedometer, the sampling frequency of LIDAR 

was 10 (Hz), and the mounting position of the LIDAR was 1.7 

(m) height. In this condition, the car travels 0.556 (m) during 

one sampling interval, and this value was used as the initial 

transition of the ICP and the NDT algorithms. The parameters 

of the ICP algorithm were set as follows considering the 

balance of accuracy and processing speed: the maximum 

number of iterations was 10, the transformation epsilon was 

0.001, the fitness epsilon was 0.00001, and the maximum 

correspondence distance was 1.0 (m). Moreover, the 

parameters of the NDT algorithm were set as follows: the grid 

resolution was 2.0 (m), the maximum number of iterations was 

3, the fitness epsilon was 0.2, and the maximum step size was 

1.0 (m). The cost function is defined as follows:  

 

              𝑓(𝑹𝑘, 𝒕𝑘) = ‖(𝑹𝑘𝑿𝑘 + 𝒕𝑘) − 𝑿𝑘−1‖𝐹 𝑁⁄  
 

where 𝑿𝑘 ≜ [𝒙𝑘
1 ⋯ 𝒙𝑘

𝑁]𝑇 ∈ ℝ3×𝑁  is a matrix configured 

3D point 𝒙𝑘
𝑛  at discrete time 𝑘, ‖∙‖𝐹  is Frobenius norm, 𝑁 is 

the number of measurement points, and 𝑹𝑘  and 𝒕𝑘  are the 
estimated rotation matrix and translation vector, respectively. 
A smaller cost corresponds to improved matching. The 
matching accuracy and processing time of these experiments 
are shown in Table I. It is found from these results that the ICP 
algorithm was better in the accuracy and the processing time 
than the NDT algorithm. However, these experimental results 
were obtained in an almost invariable environment. If the 
measured objects were moving, there is a possibility that the 
performance of the NDT algorithm would be better. 

TABLE I.  EXPERIMENTAL RESULT 

Algorithm  
Performance 

Cost value Processing time [s] 

ICP 0.101 0.846 

NDT 0.306 14.194 

 

 

Fig. 3. Relationship of laser spot density and distance.  

 

Fig. 4.   Example of LIDAR measurment of a pedestrian.  

 

Fig. 5.   Example of pedestrian recognitin by LIDAR measurment. 



  

B. Extraction of person point cloud clusters 

The processing flow of extraction and superimposition of 
pedestrian point cloud proposed in this paper is shown in Fig. 
7. In this method, the movement estimation and pedestrian 
detection are executed in parallel in the point cloud obtained 
by LIDAR. In the movement estimation procedure, the 
pedestrian detection results of the last and current frame are 
integrated and the difference calculated. In the pedestrian 
detection procedure, the point cloud clustering is executed for 
their categorization. First, the measurement points on the road 
are removed. Next, multiple point clouds are obtained in 
isolation and the clustering process executed for them. 
Additionally, the voxel fitting process is executed. The values 
of width, height, and depth of the voxel are denoted as 𝑤 (m), 
𝑙 (m), ℎ (m) respectively. A voxel that satisfies the following 
conditions is determined as a pedestrian: 𝑤 ≤ 1.0 (m) , 𝑙 ≤
1.0 (m), and 0.45 (m) ≤ ℎ ≤ 2.0 (m). 

C. Identity determination and superimposing of point clouds 

From the pedestrian detection results of consecutive 𝑘 and 
𝑘 + 1 frames, the voxel is determined to be the same person. 
The position of the center of gravity and the size of each side 
of the voxel were used for the evaluation of their identity. By 
the fluctuation of the measurement of LIDAR, the number of 
laser spots on the same pedestrian changes for each frame. 
Therefore, the size of voxels in each frames changes. Thus, 
allowable errors are set to compare voxels as follows: 

ℎ𝑖,𝑘(1 − α) ≤ ℎ𝑖,𝑘+1 ≤ ℎ𝑖,𝑘(1 + 𝛼) 

𝑤𝑖,𝑘(1 − 𝛽) ≤ 𝑤𝑖,𝑘+1 ≤ 𝑤𝑖,𝑘(1 + 𝛽) 

where ℎ𝑖,𝑘 and 𝑤𝑖,𝑘 represent the height and width of a voxel at 

time 𝑘, 𝛼 = 0.27, 𝛽 = 0.15, and 𝑖 is index of the voxel. By 
assuming the distance of pedestrian movement per sample, the 
distance is incorporated in these parameters. Voxels 
determined to represent the same pedestrian are superimposed 
by the coordinate transformation to align their centroid. The 
number of laser spots irradiated to the pedestrian can be 
increased by these processes. Next, the determination of the 
identity of the voxels in consecutive frames is carried out by 
the following condition, 

‖𝒙𝑘−1
𝑐 − 𝒙𝑘

𝑐 − 𝒍𝑘‖ ≤ 𝑟 

where 𝒍𝑘 ≜ [𝑙𝑥,𝑘 𝑙𝑦,𝑘]𝑇  is the estimated vehicle movement, 
𝒙𝑘

𝑐 ≜ [𝑥𝑘
𝑐 𝑦𝑘

𝑐]𝑇 is center of gravity coordinates of a voxel at 
𝑘, and 𝑟 is the range of movement of the pedestrian and the 
measurement error. Voxels nearest this expression when 
satisfied are regarded as identical.  

 

(a) 1st LIDAR image 

 

(b) 2nd LIDAR image 

 

(c) Superimposition by ICP 

 

(d) Superimposition by NDT 

Fig. 6   Example of superimposing of LIDAR measurment.  

 

Fig. 7   Superimposing flow chart. 



  

IV. EXPERIMENT 

Several experiments were conducted by using 
measurement data of the LIDAR. In the experiment, the car had 
a LIDAR mounted on the roof and was traveling at a constant 
speed (20 (km/h)) as depicted in Fig. 8. The result of the 
superimposition is shown in Fig. 9, and the integrated point 
clouds are shown in Fig. 10.  

In the case of a moving pedestrian, three frames were 
superimposed by the proposed method, and the number of data 
points increased by 2.4 times. For the same experiments 
conducted with a pedestrian walking 40 (m) to 60 (m) away 
from the LIDAR, the average number of data points was 9.94 
in a voxel at single frame, and increased to 29.3 by 
superimposing three frames.  

In the case of a stationary pedestrian, three frames were 
superimposed by the proposed method and the number of data 
points increased by 3.2 times. For the same experiments 
conducted with a stationary pedestrian 40 (m) to 60 (m) away 
from the LIDAR, the average number of data points was 10.9 
in a voxel at single frame, and increased to 34.8 by 
superimposing three frames.  

V. CONCLUSION 

In this research, we proposed a superimposing method of 
multiple LIDAR measurements for increasing of the accuracy 
of pedestrian recognition. In this method, the clustered point 
clouds are extracted from LIDAR measurement data and voxel 
fitting is executed. Based on the voxel size, the pedestrian 
voxels are extracted and collated with identical ones in the 
previous frame. The point clouds included in the collated 
voxels are superimposed, and the movement estimation is 

executed using the collated result. It was confirmed by the 
experimental results that superimposing pedestrian point 
clouds in three frames can be stably executed. Moreover, the 
number of laser spots from the HDL-64E to a pedestrian 50 (m) 
away could be increased from 16 to 39 points. 

This research is part of the results of a project 
commissioned by the Ministry of Economy, Trade and 
Industry, “2015: The Next-generation Advanced Driver 
Assistance Systems Research and Development 
Demonstration.” 
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Fig. 8  Outline of the exprimental conditions. 

 

Fig. 9  Superimposing result for pedestrian detection. 

 

(a) Walking pedestrian  

 

(b) Standing pedestrian 

Fig. 10  Superimposing result.  


