
  

 

Abstract— We consider the object grasping problem by an 

industrial robot; and we propose a method where the robot 

learns how to detect and localize the object with respect to the 

frame of the robot in real time based on a small data set by using 

infrared images. In this research, we use a robot handling system 

that consists of a seven degree of freedom industrial robot and a 

three-fingered gripper. The target object and the surroundings 

of the robot are measured by multiple RGB-D cameras. The 

detection and localization of the object is learned by several 

convolutional neural networks (CNNs). Consequently, we 

develop a real time system that successfully localizes the object 

with a small amount of training data. 

 

I. INTRODUCTION  

A. Background  

One of the current industrial problems is finding a method 
to increase the robustness of a picking system, e.g., the 
Amazon picking challenge [1], which is a contest that aims to 
overcome this problem. In actual product lines, most of the 
engineers have adopted the teaching-play-back method to 
program industrial robots. However, this method is not robust 
when there is a change in the targets and/or environment. 
Generally, to construct a robust system many sensors such as 
vision sensors and ranging sensors are installed in the line 
system. However, the installation of many sensors causes high 
economical and computational costs. Moreover, recently, 
automation systems based on three-dimensional (3-D) 
computer-aided design (CAD) modeling have been developed 
and adopted by many companies. However, these systems also 
require many sensors to adjust with the real environment and 
the computational and virtual world.  To attain a simple, robust, 
and easy-to-use sensor system, it is essential that industrial 
robots possess higher intelligence. Therefore, this research is 
focused on developing an intelligent robot system capable of 
grasping a target using a unique sensor. 

B. Focus of research  

In recent years, convolutional neural networks (CNN) with 
deep learning and their high recognition ability have been 
gaining popularity [4]. However, the structure of the best state-
of-the-art networks is very complex and huge, e.g. the AlexNet 
network which served as a basis for numerous recent 
researches has over sixty million parameters [5]. In industrial 
applications, large training data set and longer training duration 
results in an increased initial cost for its introduction. In general, 
when the size of the CNN becomes large, the recognition 
capability is improved. On the other hand, the amount of data 
for training the number of connections between the layers, and 
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the computational costs are increased exponentially. In actual 
industrial applications, it is difficult to collect large number of 
training data sets. Therefore, there is demand to build a CNN 
that is as small as possible. In this research, we focus on a part 
of industrial robot’s task and construct a small and reasonable 
CNN scheme.  

II. METHOD 

The industrial robotic grasping task can broadly be 
categorized into four parts [2]: detection and localization of the 
object, grasping plan generation, trajectory plan generation, 
and motion to the target. These tasks called “pick and place” 
are general robotic tasks. The overview of a pick and place 
system used in this research is shown in Fig. 1. In this research, 
we focus on the detection and localization of the object, and 
construct CNNs for the estimation of the position of the target. 
We chose to estimate only the x and y coordinates, the frame 
used in this research is shown in Fig. 2. In our developed 
system, the CNNs are trained by a depth camera and are used 
for the recognition of the position by using monocular infrared 
(IR) camera. The depth measurement and IR imaging can be 
achieved by a Kinect sensor. 

For the CNNs implementation, the training phase and the 
recognition phase are executed sequentially. In general, a huge 
amount of data containing paired inputs and outputs is required 
for the training phase. The collection and preparation of this 
training dataset is a highly time-consuming process for 
engineers.  Therefore, to reduce the training data size, we 
adopted low resolution input data, i.e., an IR image with 76×76 
pixels to detect and estimate the position of target objects. The 
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Fig. 1. Picking robot system process. The robot moves above the 

estimated position of the target, decreases its height, grasps the object 

and moves up: (a) home position, (b) motion, and (c) grasping of the 

target. 



  

IR image is also robust against the change of brightness. 
Moreover, to reduce the size of the CNNs, we used multiple 
CNNs for each parameter estimation in parallel, and the 
outputs of CNNs are integrated and given to the robot 
controller. We used only a few hundreds of examples to create 
the data set which is evidently a huge challenge as it forces the 
CNNs to be able to generalize well.  

We focused on the estimation of the position of the object to 
be grasped with three conditions: 

1) Using a single IR image with 76×76 pixels as input. 
2) Using a small training data set of 240 examples. 
3) Providing a fast pose estimation of at least 100 Hz. 

Consequently the proposed method achieved the following 
abilities:  

- Accuracy is less than 21.4 mm including sensor noise. 
- Classification rate is 93 %. 
We built a robot handling system that is consisted of the 

industrial robotic arm: Motoman which has seven degrees of 

freedom and a three-fingered gripper called D-Hand [2]. The 

target object and the surroundings of the robot are measured by 

a Microsoft Kinect Ver.2 RGB-D camera. 

III. CNN 

CNNs are used for the detection and localization of the 

objects. The picking area on the workbench has been divided 

into six areas (named as 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹), and an overview is 

shown in Fig. 2 We divided the experiment table into six areas 

instead of training the CNNs on the entire picking area 

because we obtained better results as observed from 

experiments. The target is first detected and classified in one 

of the six area by a CNN classifier; the target position is then 

estimated by two CNNs (one for x and one for y). Fig. 3 shows 

the entire process and display of the inner architecture of the 

CNNs. For each area two CNNs are built, meaning that we 

have 12 CNNs to estimate the position.  The recognition rates 

and hold success rates on each area are evaluated. 

A. The training dataset 

In our research a training example is constituted of an IR 
image and a pose estimation measured by the Kinect. The 
originally captured IR image has 256×256 pixels; it is then 
cropped and rescaled to a 76×76 pixels image, named as 𝒓𝑖 ∈
ℝ76×76. In this notation 𝑖 refers to the index of the image. The 

output is the center position 𝒙𝑖 ≜ [𝑥𝑖 𝑦𝑖]𝑇of the target on the 
workbench with respect to the frame of the robot. A training 
example is denoted by 𝒑𝑖 ≜ {𝒓𝑖, 𝒙𝑖}. Note that the 𝒙𝑖 include 
measurement errors because it was collected by using a 
merging algorithm on the point cloud data measured by the 
Kinect.  

Furthermore, data augmentation was performed to reduce 
overfitting. Instead of cropping the initial image each time in 
the same region of interest we slide the window over by one 
pixel up and by one pixel right. This general trick was sufficient 
to multiply our dataset size by a factor 4.   

The objects we used were cylinders of 170 mm in height 
and 50 mm in diameter. We separated the workbench in six 
areas and created 40 training examples in each of them. For 
each area, we randomly placed the object and tried to cover the 
maximum number of positions. The resulting datasets 𝑃m ≜
{𝒑𝑖|𝑖 = 1, ⋯ ,160} , where 𝑚 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹}  are sets 
containing 160 (40×4) data. We define Δ =  ⋃ 𝑃𝑚 as the whole 
dataset which contains 960 training examples. 

B. The Classifier 

A classifier before the position estimator is adopted to allow 

specialization of the estimators in each area. The size of the 

dataset Δ can then be reduced compared to the one needed if 

we used one large estimator for the entire workbench. We used 

the whole dataset  Δ to train the classifier. It was randomly 

divided into 800 training examples for the training set and 160 

training examples for the validation test. The CNN classifier 

is composed of a single convolution layer with two filters of 

size 3×3 followed by a pooling layer (to reduce the size of the 

image to a 38×38 pixels image) and a rectified linear units 

(ReLU) activation function. The result was feeding a fully 

connected layer of six neurons giving the softmax probability 

of the object being in one of the area. For the training, we used 

stochastic gradient descent with a mini-batch of size 200.  

 

Fig. 3      Structure of the proposed high-throughput CNN.  

 

Fig. 2     Division of the picking area on the workbnech into six areas. 



  

C. Position estimator 

After the area of the target is detected, its exact position is 

estimated by the CNNs responsible for that area. For this 

purpose, different CNNs for each area were trained on the 

suitable  𝑃𝑚  dataset of size 160. Each time, the training 

examples were randomly divided into a training set of size 130 

and a validation set of size 30. We have a CNN for each 

coordinate, i.e. one CNN estimates the position on the x 

coordinate and another one estimates the y coordinate. Thus 

12 CNNs are used in this system. All CNNs have the same 

structure. In order to reduce the training time and the number 

of training datasets, we chose a relatively shallow CNN 

architecture. They are comprised of three convolution layers 

(2, 4, and 2 filters of size 3×3 each), followed by a pooling 

layer and then a single output neuron. The ReLU activation 

functions were used after the two first convolution layer and 

after the pooling layer. For the training, we adopted the Adam 

optimization method with a mini-batch of size 4.  

IV. EXPERIMENTS 

To test our system we performed three experiments. As our 

system uses IR picture we used objects of different color. An 

image of the objects we used could be seen in Fig. 4. 

The first experiment was to test the accuracy of the 

classifier. The picking area on the workbench is divided into 

six areas, and the classifier should determine the location of 

the objects. For each area we performed 40 tests. We can 

observe from Fig. 5 that our classifier has an average success 

rate of 93%; however the percentages vary between the 

classified areas. The best classified areas, represented as D and 

F, which were always correctly classified.  The low 

performing area, E, was wrongly classified most of the time 

as the object was near the border, which were the areas of F 

and D.  

 
The objective of the second experiment was to measure the 

accuracy of our position estimators. We compared the error 
between the estimation by the CNNs and the estimation by the 
Kinect for each area. We performed 20 tests for each area. We 
can observe from Fig. 6 that on an average the maximum error 
was 21.4 mm and the minimum one was 14.2 mm. It is logical 
as the localization by Kinect is not precise and is unstable. If 
one wait to measure the position of an object by the Kinect one 
would see a range of position varying from about 20 mm. 
Therefore, it was then expected to not have a perfect accuracy 

in the position estimation. A visualization on the software Rviz 
is shown in Fig. 7. 

Therefore, to verify that our CNNs were well trained we 
performed a third experiment that involved randomly placing 
the objects anywhere on the picking area and check whether 
the robot could grasp it. To grasp the objects the robot was first 
asked to move above the CNNs’ estimated position, then 
decrease its height, close its fingers and ultimately increase its 
height. If the object did not fall, it was considered as a 

 

Fig.5     Classification of success rate in percentage with respect to the 

different areas. 

Fig.6     Average error in milimeters between the estimation by the Kinect 
and the CNNs with respect to the different areas. 

 

Fig.7     Visualization on Rviz of the robot pose, the Kinect position 

estimation of the object, and the CNN estimation. Since the object is a 

cylindrical shape , the directions of the 𝑥 axis and 𝑦 axis are optional . 

 

Fig.4     Object used during the experiments. Because the images taken 

are infrared images the colors of the objects did not have any effect. 



  

successful grasp.   We performed this experiment forty times, 
and all the results were successful grasps, except one area 
misclassification and two bad position estimation. 

V. CONCLUSION AND FUTURE WORK 

Our method showed that it is possible with CNNs to 

estimate the position of an object with respect to the frame of 

the robot. It allows real time detection and estimation of the 

object to be grasped. Moreover, we used a considerably small 

number of images to train the CNNs, which indicates good 

generalization property of the networks, and allow the creation 

of a dataset in small duration. As the resulting CNNs are 

considerably small, the speed of estimation is extremely high. 

We did not perform precise measurements but in practice we 

were doing estimation as a 100 Hz frequency showing that our 

system is suitable for real time applications. 

However, we always used the same shape for the target 

objects. We tried to estimate the position of other objects with 

different shapes and the results were acceptable 

(approximately 50mm errors) given that the networks had 

never seen them before. We are planning to extend this work 

to check whether it can be generalized to multiple shape object 

detection and localization.  

Furthermore, instead of manually creating the dataset we 

will investigate the possibility to perform automatic dataset 

generation using the robot itself. Indeed, if there is a precise 

but slow localization method then the robot could grasp the 

object, randomly place it on the workbench and hence create 

a new training example for the CNN. The resulting neural 

networks will then replace the localization method to increase 

the speed of the localization system.  

In addition, we were detecting and estimating the position 

of only one object at a time. It is a difficult problem to create 

a training dataset containing multiples objects. Another 

interesting problem that arises is the management of network 

outputs, considering that it cannot be changed.  
Finally, we focused only on the estimation of x and y, we 

did not estimate the height and orientation of the object. We 
want to continue this work further to allow the networks to 
perform it. 
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