

Abstract— We consider the object grasping problem by an

industrial robot; and we propose a method where the robot

learns how to detect and localize the object with respect to the

frame of the robot in real time based on a small data set by using

infrared images. In this research, we use a robot handling system

that consists of a seven degree of freedom industrial robot and a

three-fingered gripper. The target object and the surroundings

of the robot are measured by multiple RGB-D cameras. The

detection and localization of the object is learned by several

convolutional neural networks (CNNs). Consequently, we

develop a real time system that successfully localizes the object

with a small amount of training data.

I. INTRODUCTION

A. Background

One of the current industrial problems is finding a method
to increase the robustness of a picking system, e.g., the
Amazon picking challenge [1], which is a contest that aims to
overcome this problem. In actual product lines, most of the
engineers have adopted the teaching-play-back method to
program industrial robots. However, this method is not robust
when there is a change in the targets and/or environment.
Generally, to construct a robust system many sensors such as
vision sensors and ranging sensors are installed in the line
system. However, the installation of many sensors causes high
economical and computational costs. Moreover, recently,
automation systems based on three-dimensional (3-D)
computer-aided design (CAD) modeling have been developed
and adopted by many companies. However, these systems also
require many sensors to adjust with the real environment and
the computational and virtual world. To attain a simple, robust,
and easy-to-use sensor system, it is essential that industrial
robots possess higher intelligence. Therefore, this research is
focused on developing an intelligent robot system capable of
grasping a target using a unique sensor.

B. Focus of research

In recent years, convolutional neural networks (CNN) with
deep learning and their high recognition ability have been
gaining popularity [4]. However, the structure of the best state-
of-the-art networks is very complex and huge, e.g. the AlexNet
network which served as a basis for numerous recent
researches has over sixty million parameters [5]. In industrial
applications, large training data set and longer training duration
results in an increased initial cost for its introduction. In general,
when the size of the CNN becomes large, the recognition
capability is improved. On the other hand, the amount of data
for training the number of connections between the layers, and

T. Barbié is with ISAE-Supaero, Toulouse, France and Kyushu Institute of

Technology Japan, R. Tanaka, R. Kabutan, and T. Nishida are with Kyushu

Institute of Technology, Kitakyushu, Fukuoka, Japan.

the computational costs are increased exponentially. In actual
industrial applications, it is difficult to collect large number of
training data sets. Therefore, there is demand to build a CNN
that is as small as possible. In this research, we focus on a part
of industrial robot’s task and construct a small and reasonable
CNN scheme.

II. METHOD

The industrial robotic grasping task can broadly be
categorized into four parts [2]: detection and localization of the
object, grasping plan generation, trajectory plan generation,
and motion to the target. These tasks called “pick and place”
are general robotic tasks. The overview of a pick and place
system used in this research is shown in Fig. 1. In this research,
we focus on the detection and localization of the object, and
construct CNNs for the estimation of the position of the target.
We chose to estimate only the x and y coordinates, the frame
used in this research is shown in Fig. 2. In our developed
system, the CNNs are trained by a depth camera and are used
for the recognition of the position by using monocular infrared
(IR) camera. The depth measurement and IR imaging can be
achieved by a Kinect sensor.

For the CNNs implementation, the training phase and the
recognition phase are executed sequentially. In general, a huge
amount of data containing paired inputs and outputs is required
for the training phase. The collection and preparation of this
training dataset is a highly time-consuming process for
engineers. Therefore, to reduce the training data size, we
adopted low resolution input data, i.e., an IR image with 76×76
pixels to detect and estimate the position of target objects. The

Real Time Object Position Estimation by

Convolutional Neural Networks

Thibault BARBIÉ, Ryodo TANAKA, Ryo KABUTAN, and Takeshi NISHIDA

Fig. 1. Picking robot system process. The robot moves above the

estimated position of the target, decreases its height, grasps the object

and moves up: (a) home position, (b) motion, and (c) grasping of the

target.

IR image is also robust against the change of brightness.
Moreover, to reduce the size of the CNNs, we used multiple
CNNs for each parameter estimation in parallel, and the
outputs of CNNs are integrated and given to the robot
controller. We used only a few hundreds of examples to create
the data set which is evidently a huge challenge as it forces the
CNNs to be able to generalize well.

We focused on the estimation of the position of the object to
be grasped with three conditions:

1) Using a single IR image with 76×76 pixels as input.
2) Using a small training data set of 240 examples.
3) Providing a fast pose estimation of at least 100 Hz.

Consequently the proposed method achieved the following
abilities:

- Accuracy is less than 21.4 mm including sensor noise.
- Classification rate is 93 %.
We built a robot handling system that is consisted of the

industrial robotic arm: Motoman which has seven degrees of

freedom and a three-fingered gripper called D-Hand [2]. The

target object and the surroundings of the robot are measured by

a Microsoft Kinect Ver.2 RGB-D camera.

III. CNN

CNNs are used for the detection and localization of the

objects. The picking area on the workbench has been divided

into six areas (named as 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹), and an overview is

shown in Fig. 2 We divided the experiment table into six areas

instead of training the CNNs on the entire picking area

because we obtained better results as observed from

experiments. The target is first detected and classified in one

of the six area by a CNN classifier; the target position is then

estimated by two CNNs (one for x and one for y). Fig. 3 shows

the entire process and display of the inner architecture of the

CNNs. For each area two CNNs are built, meaning that we

have 12 CNNs to estimate the position. The recognition rates

and hold success rates on each area are evaluated.

A. The training dataset

In our research a training example is constituted of an IR
image and a pose estimation measured by the Kinect. The
originally captured IR image has 256×256 pixels; it is then
cropped and rescaled to a 76×76 pixels image, named as 𝒓𝑖 ∈
ℝ76×76. In this notation 𝑖 refers to the index of the image. The

output is the center position 𝒙𝑖 ≜ [𝑥𝑖 𝑦𝑖]𝑇of the target on the
workbench with respect to the frame of the robot. A training
example is denoted by 𝒑𝑖 ≜ {𝒓𝑖, 𝒙𝑖}. Note that the 𝒙𝑖 include
measurement errors because it was collected by using a
merging algorithm on the point cloud data measured by the
Kinect.

Furthermore, data augmentation was performed to reduce
overfitting. Instead of cropping the initial image each time in
the same region of interest we slide the window over by one
pixel up and by one pixel right. This general trick was sufficient
to multiply our dataset size by a factor 4.

The objects we used were cylinders of 170 mm in height
and 50 mm in diameter. We separated the workbench in six
areas and created 40 training examples in each of them. For
each area, we randomly placed the object and tried to cover the
maximum number of positions. The resulting datasets 𝑃m ≜
{𝒑𝑖|𝑖 = 1, ⋯ ,160} , where 𝑚 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹} are sets
containing 160 (40×4) data. We define Δ = ⋃ 𝑃𝑚 as the whole
dataset which contains 960 training examples.

B. The Classifier

A classifier before the position estimator is adopted to allow

specialization of the estimators in each area. The size of the

dataset Δ can then be reduced compared to the one needed if

we used one large estimator for the entire workbench. We used

the whole dataset Δ to train the classifier. It was randomly

divided into 800 training examples for the training set and 160

training examples for the validation test. The CNN classifier

is composed of a single convolution layer with two filters of

size 3×3 followed by a pooling layer (to reduce the size of the

image to a 38×38 pixels image) and a rectified linear units

(ReLU) activation function. The result was feeding a fully

connected layer of six neurons giving the softmax probability

of the object being in one of the area. For the training, we used

stochastic gradient descent with a mini-batch of size 200.

Fig. 3 Structure of the proposed high-throughput CNN.

Fig. 2 Division of the picking area on the workbnech into six areas.

C. Position estimator

After the area of the target is detected, its exact position is

estimated by the CNNs responsible for that area. For this

purpose, different CNNs for each area were trained on the

suitable 𝑃𝑚 dataset of size 160. Each time, the training

examples were randomly divided into a training set of size 130

and a validation set of size 30. We have a CNN for each

coordinate, i.e. one CNN estimates the position on the x

coordinate and another one estimates the y coordinate. Thus

12 CNNs are used in this system. All CNNs have the same

structure. In order to reduce the training time and the number

of training datasets, we chose a relatively shallow CNN

architecture. They are comprised of three convolution layers

(2, 4, and 2 filters of size 3×3 each), followed by a pooling

layer and then a single output neuron. The ReLU activation

functions were used after the two first convolution layer and

after the pooling layer. For the training, we adopted the Adam

optimization method with a mini-batch of size 4.

IV. EXPERIMENTS

To test our system we performed three experiments. As our

system uses IR picture we used objects of different color. An

image of the objects we used could be seen in Fig. 4.

The first experiment was to test the accuracy of the

classifier. The picking area on the workbench is divided into

six areas, and the classifier should determine the location of

the objects. For each area we performed 40 tests. We can

observe from Fig. 5 that our classifier has an average success

rate of 93%; however the percentages vary between the

classified areas. The best classified areas, represented as D and

F, which were always correctly classified. The low

performing area, E, was wrongly classified most of the time

as the object was near the border, which were the areas of F

and D.

The objective of the second experiment was to measure the

accuracy of our position estimators. We compared the error
between the estimation by the CNNs and the estimation by the
Kinect for each area. We performed 20 tests for each area. We
can observe from Fig. 6 that on an average the maximum error
was 21.4 mm and the minimum one was 14.2 mm. It is logical
as the localization by Kinect is not precise and is unstable. If
one wait to measure the position of an object by the Kinect one
would see a range of position varying from about 20 mm.
Therefore, it was then expected to not have a perfect accuracy

in the position estimation. A visualization on the software Rviz
is shown in Fig. 7.

Therefore, to verify that our CNNs were well trained we
performed a third experiment that involved randomly placing
the objects anywhere on the picking area and check whether
the robot could grasp it. To grasp the objects the robot was first
asked to move above the CNNs’ estimated position, then
decrease its height, close its fingers and ultimately increase its
height. If the object did not fall, it was considered as a

Fig.5 Classification of success rate in percentage with respect to the

different areas.

Fig.6 Average error in milimeters between the estimation by the Kinect
and the CNNs with respect to the different areas.

Fig.7 Visualization on Rviz of the robot pose, the Kinect position

estimation of the object, and the CNN estimation. Since the object is a

cylindrical shape , the directions of the 𝑥 axis and 𝑦 axis are optional .

Fig.4 Object used during the experiments. Because the images taken

are infrared images the colors of the objects did not have any effect.

successful grasp. We performed this experiment forty times,
and all the results were successful grasps, except one area
misclassification and two bad position estimation.

V. CONCLUSION AND FUTURE WORK

Our method showed that it is possible with CNNs to

estimate the position of an object with respect to the frame of

the robot. It allows real time detection and estimation of the

object to be grasped. Moreover, we used a considerably small

number of images to train the CNNs, which indicates good

generalization property of the networks, and allow the creation

of a dataset in small duration. As the resulting CNNs are

considerably small, the speed of estimation is extremely high.

We did not perform precise measurements but in practice we

were doing estimation as a 100 Hz frequency showing that our

system is suitable for real time applications.

However, we always used the same shape for the target

objects. We tried to estimate the position of other objects with

different shapes and the results were acceptable

(approximately 50mm errors) given that the networks had

never seen them before. We are planning to extend this work

to check whether it can be generalized to multiple shape object

detection and localization.

Furthermore, instead of manually creating the dataset we

will investigate the possibility to perform automatic dataset

generation using the robot itself. Indeed, if there is a precise

but slow localization method then the robot could grasp the

object, randomly place it on the workbench and hence create

a new training example for the CNN. The resulting neural

networks will then replace the localization method to increase

the speed of the localization system.

In addition, we were detecting and estimating the position

of only one object at a time. It is a difficult problem to create

a training dataset containing multiples objects. Another

interesting problem that arises is the management of network

outputs, considering that it cannot be changed.
Finally, we focused only on the estimation of x and y, we

did not estimate the height and orientation of the object. We
want to continue this work further to allow the networks to
perform it.

REFERENCES

[1] 2016 Amazon Picking Challenge Official Rules,

“ http://amazonpickingchallenge.org/APC_2016_Official_Rules.pdf”,
20016.

[2] J Bohg A. Morales,T. Asfour, D. Kragic, “Data-driven grasp
synthesis—a survey,” in IEEE Transactions on Robotics, vol. 30,

2014, pp. 289-209.
[3] R. Kabutan and T. Nishida, “Development of robotic intelligent space

using multiple rgb-d cameras for industrial robots” Unpublished, 2016

[4] Levine, Sergey, et al. "Learning Hand-Eye Coordination for Robotic
Grasping with Deep Learning and Large-Scale Data Collection." arXiv

preprint arXiv:1603.02199 (2016).

[5] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet
classification with deep convolutional neural networks." Advances in

neural information processing systems. 2012.

http://amazonpickingchallenge.org/APC_2016_Official_Rules.pdf

